

# Excellence In Rope Meking For Over 100 

## COMMITMENT TO QUALITY AND SERVICE

Over the centuries, the need to pull, haul, lift, hoist, hold, retain or otherwise control objects has given rise to numerous methods and systems. Common to all is a strength member that performs the working part of the system. By virtue of synthetic fiber development, synthetic rope has achieved significant recognition as an extremely effective strength member for an everincreasing range of applications. Today there are synthetic ropes stronger than wire rope size-for-size and yet so light they float in water.

The American Group's rope history dates back to 1884 and we still maintain the oldest continuously registered trademark, Samson and the lion, in the United States. With our involvement in the design and manufacture of strength members for industrial and marine applications for well over a century, we have certainly witnessed tremendous developments in raw materials that could be utilized in rope design and production. Vegetable fibers, such as manila, sisal, hemp and cotton, were the major raw materials available to rope manufacturers until the advent of a synthetic fiber called nylon in the 1940's. From that period, a rapid growth in synthetic fibers took place with the development of polypropylene, polyethylene, polyester, and Nomex ${ }^{\circledR}$ fibers. Most recently in the development progression are synthetic fibers such as Kevlar ${ }^{\text {rTM }}$, Spectra ${ }^{\circledR}$, Vectran ${ }^{\circledR}$, and Dyneema ${ }^{\circledR}$ which offer the potential of yielding the strengths of wire rope in a light-weight synthetic strength member. Each fiber, vegetable or synthetic, has its own unique physical characteristics. It is important to understand these characteristics since they are the primary building block of all rope constructions.
Establishing separate and defined manufacturing processes for each fiber type and associated rope construction is
crucial to insuring that we supply the stated physical characteristics (such as strength, weight, stretch, and firmness) of each product on a consistent basis. The American Group maintains an individual Research and Development department and Quality Control function at all of its manufacturing facilities to insure consistent quality of all products produced. Our facilities in the United States have ISO-9001 certification and extensive associated testing facilities to verify that our products meet stated specifications on a daily basis.
Our commitment to producing consistent quality products goes beyond just testing finished rope; we begin the process by verifying the fiber characteristics for strength, stretch and wear. Fiber is only released to manufacturing after the required physical properties have been verified to meet established specifications Through this verification process, whether we purchase fiber or produce our own fiber, the basic building block of rope is verified.
The American Group goes beyond the guarantee of being a consistent quality rope producer; we constantly challenge ourselves to be the leader in rope design technology by listening to the end-users regarding changing application requirements and matching those needs to a fiber type and rope construction for improved performance. Our involvement and support is created not only from our R \& D groups but by our on-going reliance on maintaining an extensive technically trained sales group to assist end-users in assessing the over-all rope needs for any application.

The American Group is ready, willing, and able to supply a total strength member program whether the need is to pull, haul, lift, hoist, hold, retain or otherwise control an object.

The information enclosed on our current products and technical support information is to assist in rope selection, rope usage, and rope retirement. Even though the information presented is comprehensive, Contact us for assistance and allow us to meet our challenge of offering a total strength member program.

## MANUFACTURING CAPABILITIES

## Four facilities

1) AMCO DIVISION Lafayette, Louisiana

- 3-Strand twisted rope
- 8-Strand plaited rope
- Fiber extrusion

2) SAMSON DIVISION Ferndale, Washington

- 12-Strand single braided rope
- 2-in-1 Double braided rope
- Specialty braided ropes

3) HERZOG ROPE DIVISION Richmond, British Columbia

- 12-Strand single braided rope
- 2-in-1 Double braided rope
- Specialty braided ropes

4) DIFSA DIVISION -

Merida, Yucatan

- Solid braided rope
- Hollow braided rope
- Fiber extrusion

| SIZE RANGE CAPABILTY (ROPE DIAMETER): |  |  |
| :--- | :---: | :---: |
| CONSTRUCION | DIAMEEER <br> (Inches) | DIAMETER <br> $(\mathrm{mm})$ |
| Solid Braid | $3 / 32$ to $5 / 8$ | 2.5 to 15 |
| Hollow Braid | $3 / 16$ to $1 / 2$ | 5 to 12 |
| Single Braid | $7 / 64$ to $4-5 / 8$ | 2.5 to 112 |
| 2-in-1 Double Braid | $1 / 4$ to 5 | 6 to 120 |
| Specialty Braid | $1 / 4$ to 9 | 19 to 72 |
| 3-Strand Twist | $1 / 4$ to $3-1 / 4$ | 6 to 80 |
| 8 -Strand Plait | $1-5 / 8$ to 6 | 40 to 144 |



## PRIMARY FIBERS UTILIZED

- Cotton - A white fibrous vegetable material primarily used in sash cords.
- Sisal - A vegetable fiber from the agave plant primarily used as core in wire ropes.
- Nylon - A synthetic fiber primarily used in ropes for high elasticity.
- Polyester - A synthetic fiber primarily used in ropes for low elasticity.
- Ultra ${ }^{\text {tw* }}$ fiber - A proprietary synthetic olefin fiber primarily used in ropes for light weight and floating capability.
- Ultra Blue ${ }^{\text {rw* }}$ fiber - A proprietary synthetic co-polymer olefin fiber primarily used in ropes for light weight and floating capability.
- Kevlar ${ }^{\circledR}$ - A synthetic fiber primarily used in ropes for high heat resistance, low elasticity and high strength.
- Vectran ${ }^{\circledR}$ - A synthetic fiber primarily used in ropes for high strength and low elasticity.
- HMWPE - Refers to High Molecular Weight Polyethylene fibers (Dyneema ${ }^{\oplus}$ and Spectra ${ }^{\circledR}$ ) primarily used in ropes for high strength, low elasticity, and floating capability.
- UHMWPE - Refers to Ultra High Molecular Weight Polyethylene fibers (Dyneema ${ }^{\circledR}$ and Spectra ${ }^{\circledR}$ ) primarily used in ropes for high strength, low elasticity, and floating capability.
- Technora® ${ }^{\text {fiber - A synthetic fiber primarily }}$ used in ropes for low stretch, high strength, and high heat resistance.
- Polyolefin ${ }^{\otimes}$ fiber - A floating synthetic fiber primarily used in rope for its light weight.
* Fiber extruded by The American Group.


## ENGINEERING SERVICES

Since 1884, The American Group has been designing and manufacturing ropes to meet specific application requirements with technically superior ropes.
Our challenge has always been to have the most complete line of products with a constant and continuing commitment to quality, service and innovation.
Through the years, The American Group has worked closely with the leading fiber manufacturers to develop new products utilizing the latest in fiber technology. Our experience has resulted in the establishment of The American Group's development and testing facilities and the implementation of The American Group Quality Assurance Program.
The development and testing facilities maintain fully certified testing capabilities for break testing up to 300,000 pounds; wet and dry abrasion testing; rope analysis for construction and fiber type; and rope termination expertise and development.
To ensure The American Group's products consistently meet the highest standards, we have developed a Quality Assurance Program that complies with the requirements of ISO 9001. Routine inspections, analysis, and testing of finished products assures the highest quality. Computer generated production documents and individual specifications for all products mean that The American Group's products consistently meet the highest standards.

## DEVELOPMENT AND TESTING FACILITIES

- Certified testing equipment for performing elongation and break testing of ropes up to 300,000 pounds.
- Wet and dry accelerated and reverse bend abrasion testing.
- Certified testing equipment for performing elongation and break testing of fiber.
- Rope analysis for construction and fiber type.
- Extraction testing for lubricant content of rope.
- Termination evaluation and development.
- Member of the Cordage Institute

We were one of the first US rope manufacturers to receive ISO 9001 certification. This was a natural progression of our already existing Quality Assurance program which incorporates:

- Computer generated production documents.
- Specialized production documents for the processing of high modulus fibers.
- Standardized procedures for inspection, analysis, and testing of in-process production as well as finished products.
- Individual specifications for all products.

The American Group will insure that our products consistently meet the highest standards. The same standards users of our products have come to rely upon. We welcome the opportunity to assist in any challenge to develop viable solutions to operational strength member problems.

Ultraline ..... 6
Ultra Blue ..... 7
SSR-100/Pro-Master .....  8
SSR-1200 ..... 9
SSR-301R ..... 10
JetKore ..... 10
Pro Set Nylon ..... 11
8-Strand
Ultra Blue ..... 12
SSR-1200 ..... 13
Polyester ..... 
Strength \& Comparison Chart . ..... 15
12-STRAND
RP-12 Ultra Blue ..... 16
RP-12 SSR-1200 ..... 17
RP-12 Nylon ..... 18
RP-12 Polyester ..... 19
Quik-Splice Polytron ..... 20
Dura-Plex ..... 20
PTS-12 Nylon ..... 21
Tenex ..... 21
Amsteel ..... 22
Amsteel-Blue ..... 23
Tech 12 ..... 24
Double Braid
Spectron II ..... 25
Ulira Tech ..... 25
2-in-1 Super Strong ..... 26
Stable Braid ..... 27
Specialty Ropes
Mooring Master ..... 28
Static ..... 29
Duravet ..... 29
Strength \& Comparison Chart ..... 30
Technical Information
Standards for Strength \& Usage ..... 31
Fiber Characteristics ..... 4
Samthane ${ }^{\text {Tm }}$ Coatings ..... 5
Rope Inspection \& Retirement ..... 32-33
Elongation \& Winding on Drum ..... 34
Sheave Diameter \& Bending ..... 35
Rope Handling ..... 36
Knots ..... 37
Hardware
Nylite Spool, Shield and Shackle ..... 38
Sir Fid Push Tools,Wire Fids Pusher39

1. Bulk Strength is defined as strength per circumference squared.
2. Working is defined as rope actually in use under a cycling load.
3. Coefficient of Friction is based on reluctance to slip or slide.
4. Critical Temperature is defined as the point at which degradation is caused by temperature alone.
5. Cold Flow (Creep) is defined as fiber deformation (elongation) due to molecular slippage under a constant static loading situation. Fibers that have this inherent characteristics will display extremely low or negligible creep if minor fluctuations occur in the rate and/or frequency of load levels. In rope form, this would apply to polypropylene and HMWPE fibers such as Spectra ${ }^{\circledR}$ and Dyneema ${ }^{\circledR}$

| GENERIC FIBER TYPE | NYLON | POLYESTER | POLYPROPYIENE | HMWPE | KEVLAR | TECHNORA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bulk Strength ${ }^{1}$ | 1.0 | . $9-1.1$ | . 55 | 2.8 | 2.7 | 2.9 |
| Weight* | 1.0 | 1.21 | . 80 | . 85 | 1.26 | 1.22 |
| Working Elastic Elongation ${ }^{2}$ | 1.0 | . 60 | . 80 | . 10 | . 10 | . 10 |
| Coefficient of Friction ${ }^{3}$ | .10-. 12 | .12-. 15 | . 15-. 22 | . 08 | .10-. 12 | . 12-. 15 |
| Melting Point | $460^{\circ} \mathrm{F}$ | $480^{\circ} \mathrm{F}$ | $330^{\circ} \mathrm{F}$ | $297{ }^{\circ} \mathrm{F}$ | ${ }_{\text {chers }}{ }^{\text {chat }}$ | ${ }^{\text {Chars }}$ 90\% |
| Critical Temperature ${ }^{4}$ | $350{ }^{\circ} \mathrm{F}$ | $350{ }^{\circ} \mathrm{F}$ | $250{ }^{\circ} \mathrm{F}$ | $150^{\circ} \mathrm{F}$ | $400^{\circ} \mathrm{F}$ | $450{ }^{\circ} \mathrm{F}$ |
| Specific Gravity | 1.14 | 1.38 | . 91 | . 97 | 1.44 | 1.39 |
| Cold Flow (Creep) ${ }^{5}$ | Negligible | Negligible | Negligible to High | Negligible to High | Negligible | Negligible |

## ROPE CONSTRUCTION

All sizes stated are nominal diameters and do not reflect exact dimensions. Weights depicted are average net rope weights relaxed and standard tolerances are $\pm 5 \%$ unless agreed to in writing.


## 8-Strand Plaited

 Seepages 12-14


See pages 16-24

## 2-in-1 Double Braid

See
pages 25-27


O- Parallel Fiber Core
See
page 29



Samthane Coatings are a family of abrasion resistant coatings which are specifically formulated to match end-user requirements and specific rope constructions. The advantages and differences of these coatings are outlined below.

## ADVANTAGES

| - Improves service life | - Prevents contamination |
| :--- | :--- |
| - Reduces snagging | - Reduces culting |
| - Enhances abrasion | - Color coding for |
| resistance | identification |

The American Group provides advanced technology in developing protective coatings and other chafe protection materials. If you have specialized requirements and need a wear problem solved, contact our Specialty Products Manager at the Ferndale facility.

## SAMTHANE COATINGS KEY

V This symbol indicates standard colors are Orange and Green. Other colors available on a special order basis.
$\boldsymbol{\nabla}$ This symbol indicates Clear coating is standard. Other colors available on a special order basis.

- This symbol indicates color of coating may be specified as Red, Yellow, Blue, Orange, Green or Black.
44 This symbol indicates Grey is the standard color. Other colors available on a special order basis.
A $\boldsymbol{\nabla}$ This symbol indicates color of coating may be specified as Red, Green, Blue or Black.

VA This symbol indicates blue is the standard color. Other colors available on a special order basis.

## SAMTHANE TYPE A

Spliceable coating used on polyester fiber double braids. Currently available on Stable Braid and Spectron II. Samthane Type A greatly enhances abrasion resistance, helps keep contaminants from entering the rope making it easier to resplice used rope. Available in a variety of colors for easy identification, tracking time in service, keying colors to specific operations, etc. Splices, new and used, utilizing the same technique and tools used for uncoated rope. Coating adds approximately 3-5\% weight to the line.

SAMTHANE SELECTOR

| Property | Samthane | Samthane | Samthane | Samthane |
| :---: | :---: | :---: | :---: | :---: |
|  | A | F | C | S |
| Spliceability | Yes | Yes | No | Yes |
| Shore <br> Hardness | N. A. | N. A. | 85 A | N. A. |
| Break <br> Strength | 2,500 psi | 2,500 psi | 5,400 psi | 5,000 psi |
| Elongation <br> at Break | $610 \%$ | $610 \%$ | $450 \%$ | $250 \%$ |
| Modulus <br> at 300\% | 600 psi | 600 psi | 1,900 psi | N. A. |
| Type | Aromatic <br> Urethane | Aromatic <br> Urethane | Polyether <br> Urethane | Aromatic <br> Urethane |

## SAMTHANE TYPE F

Spliceable coating specially formulated for coating Dura-Plex. Physical properties are the same as Type A coating. Adds approximately $3-5 \%$ weight to line.

## SAMTHANE TYPE C

Non-spliceable jacketing type coating usually applied to specific sections of a line which will be subjected to extreme abrasion. The coating is very tough, with excellent resistance to culting and chaffing. Usually applied to a thickness of $1 / 8$ ", or more, which has a stiffening effect on the rope. Applied on pre-spliced ropes. This material is also used for thimble encapsulation.

## SAMTHANE TYPE S

Spliceable coating used on HWMPE, olefin, and polyester fiber ropes. A coating that adds firmness and greatly improves wear life. The coating will add approximately 3-5\% weight to the rope. Supplied on Spectron 12 and Tenex as a standard product. Available on other products per <br> \section*{\title{
PRO-GARD" MARINE FINISH
}} <br> \section*{\title{
PRO-GARD" MARINE FINISH
}}

## NYLON ROPES

The American Group has integrated the use of Pro-Gard ${ }^{T m}$ marine finish for specific braided nylon products to ensure the Marine Industry maximum working strength and wear. As a result of using the best, you can start with maximum wet working strength a standard nylon can lose $15 \%$ or more of its dry strength after being wet. Double your wear life and receive wet working strengths with the following products:

- Round Plait Nylon
- 3-Strand Pro-Set Nylon
- 2-in-1 Super Strong
- 8-Strand Pro-Set Nylon


## POLYESTER ROPES

By developing a unique marine fiber finish and application process, The American Group can offer braided polyester products that will outwear standard polyester ropes by at least 5 times in wet use. Our special Pro-Gard ${ }^{\text {T" }}$ marine finish for polyester does not migrate; it stays with the rope to give the service life and reliability needed for the Marine Industry. The following products utilize our Pro-Gard ${ }^{1 m}$.

- Round Plait SSR-1200
- 2-in-1 Stable Braid
- Round Plait Polyester
- 8-Strand Premium Polyester


Maximize wet service life and reliability by using the above products in a wet environment.
Refer to and ask for Samson Test Method 101 for evaluating fiber finish performance for wet and dry applications.


A regular lay three-strand floating rope with high tenacity and excellent wear life. Ultraline ${ }^{\circledR}$ is produced from exclusive high tenacity orange Ultra ${ }^{\text {TM }}$ olefin fiber which allows it to yield 20 to $25 \%$ higher strength than standard yellow polypropylene ropes with twice the wear life. Its unique orange color with the proprietary red and green I.D. markers give high visibility and product identification. The performance characteristics of Ultraline ${ }^{\circledR}$ are the proven reason why it has become an accepted economical service life replacement to traditional three-strand polypropylene.

## CHARACTERISTICS

- 20-25\% stronger than polypropylene
- Two times the wear life of polypropylene
- Superior sunlight resistance to polypropylene due to our SL-5 ultraviolet inhibitors
- Excellent visibility identification


## APPLICATIONS

- Hand and Block Lines
- Pulling Lines
- Slings and Mooring Pendants
- Mooring and Tie-Up Lines
- Floating Tow Lines

Fiber Content: $\qquad$ Ultra ${ }^{\text {TM }}$ Fiber

Specific Gravity: $\qquad$ .91 (Floats)

Elastic Elongation at Percentage of Break Strength:

| $10 \%$ | $20 \%$ | $30 \%$ |
| :---: | :---: | :---: |
| 1.9 | 4.2 | 6.5 |

30\% 6.5

## 3-STRAND ULTRALINE

| SIZE |  |  |  | WEIGHT |  | AVERAGE STRENGTH |  | MINIMUM STRENGTH |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dia. Inch | Dia. mm | Circ. Inch | Circ. mm | Lbs per 100 Ft . | Kg per 100 M | Lbs | Kg | Lbs | Kg |
| 1/4" | 6 | 3/4" | 18 | 1.1 | 1.6 | 1,600 | 726 | 1,450 | 658 |
| 5/16" | 8 | 1 " | 24 | 1.8 | 2.7 | 2,300 | 1,043 | 2,100 | 953 |
| 3/8" | 9 | 1-1/8" | 27 | 2.8 | 4.2 | 3,500 | 1,588 | 3,170 | 1,438 |
| 7/16" | 11 | 1-1/4" | 33 | 3.7 | 5.5 | 4,600 | 2,087 | 4,100 | 1,860 |
| 1/2" | 12 | 1-1/2" | 36 | 4.5 | 6.7 | 5,400 | 2,449 | 4,900 | 2,223 |
| 9/16" | 14 | 1-3/4" | 42 | 6.0 | 8.9 | 6,600 | 2,994 | 5,980 | 2,713 |
| 5/8" | 16 | 2" | 48 | 7.4 | 11.0 | 8,100 | 3,674 | 7,280 | 3,302 |
| 3/4" | 18 | 2-1/4" | 54 | 10.5 | 15.6 | 11,100 | 5,035 | 9,950 | 4,513 |
| 7/8" | 22 | 2-3/4" | 66 | 14.4 | 21.4 | 15,000 | 6,804 | 13,500 | 6,124 |
| $1{ }^{\prime \prime}$ | 24 | 3" | 72 | 17.7 | 26.3 | 18,400 | 8,346 | 16,600 | 7,530 |
| 1-1/8" | 28 | 3-1/2" | 84 | 23.4 | 34.8 | 24,300 | 11,022 | 21,900 | 9,934 |
| 1-1/4" | 30 | 3-3/4" | 90 | 26.5 | 39.4 | 27,400 | 12,429 | 24,700 | 11,204 |
| 1-1/2" | 36 | 4-1/2" | 108 | 37.6 | 56.0 | 38,900 | 17,645 | 35,000 | 15,876 |
| 1-5/8" | 40 | 5" | 120 | 46.4 | 69.1 | 47,200 | 21,410 | 42,500 | 19,278 |
| 1-3/4" | 44 | 5-1/2" | 132 | 57.7 | 85.9 | 58,300 | 26,445 | 52,500 | 23,814 |
| $2{ }^{\prime \prime}$ | 48 | $6{ }^{\prime \prime}$ | 144 | 67.5 | 100.5 | 67,800 | 30,754 | 61,000 | 27,670 |
| 2-1/8" | 52 | 6-1/2" | 156 | 78.9 | 117.4 | 78,900 | 35,789 | 71,000 | 32,206 |
| 2-1/4" | 56 | 7" | 168 | 90.7 | 135.0 | 90,000 | 40,824 | 81,000 | 36,742 |
| 2-1/2" | 60 | 7-1/2" | 180 | 105.2 | 156.6 | 104,400 | 47,356 | 94,000 | 42,638 |
| 2-5/8" | 64 | 8" | 192 | 118.6 | 176.5 | 117,200 | 53,162 | 105,500 | 47,855 |
| 2-3/4" | 68 | 8-1/2" | 204 | 135.1 | 201.1 | 133,300 | 60,465 | 120,000 | 54,432 |
| $3 "$ | 72 | $9{ }^{\prime \prime}$ | 216 | 149.5 | 222.5 | 147,800 | 67,042 | 133,000 | 60,329 |
| $3-1 / 4{ }^{\prime \prime}$ | 80 | 10" | 240 | 185.6 | 276.2 | 177,800 | 80,650 | 160,000 | 72,576 |

3-Strand Ultra Blue ${ }^{\text {rm }}$ Fiber

Ultra Blue ${ }^{\text {Tm }}$ rope constructions are truly a major development in comparison to traditional polypropylene ropes. Ultra Blue ${ }^{\text {tw }}$ ropes utilize our proprietary Ultra Blue ${ }^{\text {Tw }}$ copolymer olefin fiber. This maximum strength fiber creates ropes that are 30 to $35 \%$ higher in strength than equivalent polypropylene constructions.
This fiber gives Ultra Blue ${ }^{\text {TM }}$ ropes up to three times the wear life over polypropylene. The unique fiber surface develops excellent grip capability while adding to the surface wear life. The overall strength and wear features give the opportunity of downsizing while maintaining longer wear life over standard polypropylene ropes.

## CHARACTERISTICS

- $30-35 \%$ stronger than polypropylene
- Floats
- Excellent flex wear resistance
- Superior ultraviolet resistance over polypropylene


## APPLICATIONS

- Mooring and Tie-Up Lines
- Floating Tow Lines
- Slings and Mooring Pendants
- Hand and Block Lines
- Pulling Lines

Fiber Content: $\qquad$ Ultra Blue ${ }^{T M}$ Fiber

Specific Gravity: $\qquad$ .94 (Floats)

Elastic Elongation at Percentage of Break Strength:

| $10 \%$ | $20 \%$ | $30 \%$ |
| :---: | :---: | :---: |
| 2.0 | 4.8 | 6.8 |

3-STRAND ULTRA BIUE

| SIZE |  |  |  | WEIGHT |  | AVERAGE STRENGTH |  | MINIMUM STRENGTH |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Dia. } \\ & \text { Inch } \end{aligned}$ | Dia. <br> mm | $\begin{array}{\|l} \hline \text { Circ. } \\ \text { Inch } \\ \hline \end{array}$ | $\begin{aligned} & \text { Circ. } \\ & \mathrm{mm} \end{aligned}$ | $\begin{aligned} & \text { Lbs per } \\ & 100 \mathrm{Ft} \text {. } \end{aligned}$ | $\begin{aligned} & \hline \mathrm{Kg} \text { per } \\ & 100 \mathrm{M} \\ & \hline \end{aligned}$ | Lbs | Kg | Lbs | Kg |
| 1/4" | 6 | 3/4" | 18 | 1.1 | 1.6 | 1,700 | 771 | 1,500 | 680 |
| 5/16" | 8 | $1{ }^{1 /}$ | 24 | 2.1 | 3.1 | 2,600 | 1,179 | 2,300 | 1,043 |
| 3/8" | 9 | $1-1 / 8^{\prime \prime}$ | 27 | 2.6 | 3.9 | 3,700 | 1,678 | 3,300 | 1,497 |
| 7/16" | 11 | $1-1 / 4^{\prime \prime}$ | 33 | 3.1 | 4.6 | 4,600 | 2,087 | 4,100 | 1,860 |
| 1/2" | 12 | $1-1 / 2^{\prime \prime}$ | 36 | 4.5 | 6.7 | 6,100 | 2,767 | 5,500 | 2,495 |
| 9/16" | 14 | 1-3/4" | 42 | 6.3 | 9.4 | 8,400 | 3,810 | 7,600 | 3,447 |
| 5/8" | 16 | 2" | 48 | 7.5 | 11.2 | 10,600 | 4,808 | 9,500 | 4,309 |
| 3/4" | 18 | 2-1/4" | 54 | 10.2 | 15.2 | 12,000 | 5,443 | 10,800 | 4,899 |
| 7/8" | 22 | 2-3/4" | 66 | 15.8 | 23.5 | 18,000 | 8,165 | 16,200 | 7,348 |
| $1{ }^{\prime \prime}$ | 24 | $3^{\prime \prime}$ | 72 | 18.6 | 27.7 | 22,600 | 10,251 | 20,300 | 9,208 |
| 1-1/8" | 28 | 3-1/2" | 84 | 24.7 | 36.8 | 26,600 | 12,066 | 23,900 | 10,841 |
| 1-1/4" | 30 | 3-3/4" | 90 | 28.9 | 43.0 | 33,000 | 14,969 | 29,700 | 13,472 |
| 1-1/2" | 36 | 4-1/2' | 108 | 32.5 | 48.4 | 37,000 | 16,783 | 33,300 | 15,105 |
| 1-5/8" | 40 | 5" | 120 | 41.2 | 61.3 | 42,000 | 19,051 | 37,800 | 17,146 |
| 1-3/4" | 44 | 5-1/2" | 132 | 52.6 | 78.3 | 55,000 | 24,948 | 49,500 | 22,453 |
| 2" | 48 | $6^{\prime \prime}$ | 144 | 61.9 | 92.1 | 65,000 | 29,484 | 58,500 | 26,536 |
| 2-1/8" | 52 | 6-1/2" | 156 | 73.2 | 108.9 | 78,000 | 35,381 | 70,200 | 31,843 |
| 2-1/4" | 56 | 7" | 168 | 86.6 | 128.9 | 85,000 | 38,556 | 76,500 | 34,700 |
| 2-1/2" | 60 | 7-1/2' | 180 | 101.0 | 150.3 | 103,000 | 46,721 | 92,700 | 42,049 |
| 2-5/8" | 64 | 8" | 192 | 115.5 | 171.9 | 118,000 | 53,525 | 106,200 | 48,172 |
| 2-3/4" | 68 | 8-1/2" | 204 | 130.9 | 194.8 | 133,000 | 60,329 | 119,700 | 54,296 |
| 3" | 72 | $9{ }^{\text {9 }}$ | 216 | 168.0 | 250.0 | 167,000 | 75,751 | 150,300 | 68,176 |
| 3-1/4" | 80 | 10 | 240 | 208.2 | 309.8 | 205,000 | 92,988 | 184,500 | 83,689 |



3-Strand
Polyester Fiber with Ultra Blue ${ }^{\text {tm }}$ Fiber Inside

A combination fiber rope that generates excellent wear and high strength to weight. SSR-100 ${ }^{\text {Tm }}$ is produced with high strength plied filament polyester surface yarns wrapped over our high tenacity Ultra Blue ${ }^{\text {rw }}$ fiber which gives the rope a distinctive blue sheen. This balanced rope construction offers the durability features of polyester and higher strengths than other combination ropes due to the Ultra Blue ${ }^{\text {TM }}$ fiber. The superior wear SSR-100 ${ }^{\text {tm }}$ generates over standard

## CHARACTERISTICS

- High flex wear resistance
- Excellent weight to strength ratio
- A balanced, plied yarn construction
- Higher surface heat resistance than allpolypropylene ropes


## APPLICATIONS

- Hand and Block Lines
- Deck Handy Lines
- Pulling Lines
- Mooring and Tie-Up Lines
combination ropes makes it a more reliable and economic rope. Look for the blue centers to insure it is an SSR-100 ${ }^{\text {Tm }}$ product.

Fiber Content: ..... Polyester and Ultra Blue ${ }^{\text {tw }}$ Fiber

Specific Gravity: $\qquad$ 1.18

Elastic Elongation at Percentage of Break Strength:

| $10 \%$ | $20 \%$ | $30 \%$ |
| :---: | :---: | :---: |
| 1.6 | 3.5 | 4.7 |

## 3-STRAND SSR-100

| SIZE |  |  |  | WEIGHT |  | AVERAGE STRENGTH |  | MINIMUM STRENGTH |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dia. Inch | Dia. mm | $\begin{aligned} & \hline \begin{array}{l} \text { Circ. } \\ \text { Inch } \end{array} \end{aligned}$ | Circ. mm | $\begin{aligned} & \text { Lbs per } \\ & 100 \mathrm{Ft} . \end{aligned}$ | $\begin{aligned} & \hline \mathrm{Kg} \text { per } \\ & 100 \mathrm{M} \\ & \hline \end{aligned}$ | Lbs | Kg | Lbs | Kg |
| 3/16" | 5 | 9/16" | 15 | 0.8 | 1.2 | 1,000 | 454 | 900 | 408 |
| 1/4" | 6 | 3/4" | 18 | 1.4 | 2.1 | 1,800 | 816 | 1,620 | 735 |
| 5/16" | 8 | $1{ }^{1}$ | 24 | 2.4 | 3.6 | 2,800 | 1,270 | 2,520 | 1,143 |
| 3/8" | 9 | $1-1 / 8^{\prime \prime}$ | 27 | 3.9 | 5.8 | 4,100 | 1,860 | 3,690 | 1,674 |
| 7/16" | 11 | 1-1/4" | 33 | 4.9 | 7.3 | 5,100 | 2,313 | 4,590 | 2,082 |
| 1/2" | 12 | $1-1 / 2^{\prime \prime}$ | 36 | 6.5 | 9.7 | 6,900 | 3,130 | 6,210 | 2,817 |
| 9/16" | 14 | 1-3/4" | 42 | 8.5 | 12.6 | 9,100 | 4,128 | 8,190 | 3,715 |
| 5/8" | 16 | 2" | 48 | 9.5 | 14.1 | 10,000 | 4,536 | 9,000 | 4,082 |
| 3/4" | 18 | 2-1/4" | 54 | 13.5 | 20.1 | 14,500 | 6,577 | 13,050 | 5,919 |
| 7/8" | 22 | 2-3/4" | 66 | 17.7 | 26.3 | 18,700 | 8,482 | 16,830 | 7,634 |
| 1" | 24 | 3" | 72 | 22.0 | 32.7 | 23,750 | 10,773 | 21,375 | 9,696 |
| 1-1/8" | 28 | 3-1/2" | 84 | 25.0 | 37.2 | 26,600 | 12,066 | 23,940 | 10,859 |
| $1-1 / 4^{1 \prime}$ | 30 | 3-3/4" | 90 | 30.0 | 44.6 | 31,000 | 14,062 | 27,900 | 12,655 |



3-Strand Spun and Filament Polyester Jacket Fibers Covering Polyolefin Core Fibers.

A firm, balanced three-strand construction with superior hand and lock-grip holding capability. This product offers flexibility but keeps its shape under heary use. The combination of spun and filament polyester develop a rope with low stretch and excellent knot holding. The construction's firmness virtually eliminates the hockling tendency of standard lay three-strand even in long continuous lengths. Pro-Master ${ }^{\text {rm }}$ is a superior rope for rigging due to its light weight, low stretch, excellent grip and high strength.

3-STRAND PRO-MASTER

| SIZE |  |  |  | WEIGHT |  | AVERAGE STRENGTH |  | MINIMUM STRENGTH |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dia. Inch | Dia. mm | $\begin{aligned} & \hline \text { Circ. } \\ & \text { Inch } \end{aligned}$ | Circ. mm | Lbs per 100 Ft . | Kg per 100 M | Lbs | Kg | Lbs | Kg |
| 1/2" | 12 | $1-1 / 2^{\prime \prime}$ | 36 | 5.7 | 8.5 | 5,800 | 2,631 | 5,220 | 2,368 |
| 5/8" | 16 | $2{ }^{1}$ | 48 | 9.5 | 14.1 | 8,200 | 3,720 | 7,380 | 3,348 |
| 3/4" | 18 | 2-1/4" | 54 | 12.5 | 18.6 | 10,800 | 4,899 | 9,720 | 4,409 |
| 7/8" | 22 | 2-3/4" | 66 | 18.0 | 26.8 | 15,500 | 7,031 | 13,950 | 6,328 |
| $1{ }^{\prime \prime}$ | 24 | $3^{\prime \prime}$ | 72 | 22.0 | 32.7 | 18,700 | 8,482 | 16,830 | 7,634 |

## CHARACTERISTICS

- Stays firm and gives excellent hold/grip
- High strength and low stretch
- Excellent chemical and ultraviolet resistance
- Balanced, hockleresistant construction


## APPLICATIONS

- Vertical Life Lines
- Stage Counter Weight Rope
- Arborist Rigging Line
- Hand and Block Lines

Fiber Content: $\qquad$ Polyester and Polyolefin fiber

Specific Gravity: $\qquad$ 1.24

Elastic Elongation at Percentage of Break Strength:

| $10 \%$ | $20 \%$ | $30 \%$ |
| :---: | :---: | :---: |
| 2.0 | 3.2 | 3.9 |

Water Absorption
Fiber:
1-2\%

The unique combination allows strength and wear equal to an allpolyester rope with significant weight reduction. Its service life advantages have been proven in operational use - not just in our laboratory testing. Based on weight, strength and service wear life it is the maximum combination rope available. The red and green I.D. markers and blue center yarns make it an SSR-1200 ${ }^{\text {m }}$ product.

## CHARACTERISTICS

- Highest wear and strength combination rope available
- $20 \%$ lower weight than polyester ropes
- Low working elongation
- Superior flex wear resistance


## APPLICATIONS

- Deck Handy Lines
- Hand and Block Lines
- Mooring Lines
- Tug Assist Lines

| SIZE |  |  |  | WEIGHT |  | AVERAGE STRENGTH |  | MINIMUM STRENGTH |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dia. Inch | Dia. mm | $\begin{aligned} & \hline \text { Circ. } \\ & \text { Inch } \end{aligned}$ | Circ. mm | Lbs per 100 Ft . | Kg per 100 M | Lbs | Kg | Lbs | Kg |
| 1/4" | 6 | 3/4" | 18 | 1.6 | 2.4 | 2,200 | 998 | 1,980 | 898 |
| 5/16" | 8 | $1{ }^{1}$ | 24 | 2.6 | 3.9 | 3,400 | 1,542 | 3,060 | 1,388 |
| 3/8" | 9 | $1-1 / 8^{\prime \prime}$ | 27 | 3.6 | 5.4 | 4,600 | 2,087 | 4,140 | 1,878 |
| 7/16" | 11 | $1-1 / 4^{\prime \prime}$ | 33 | 4.9 | 7.3 | 5,700 | 2,586 | 5,130 | 2,327 |
| 1/2" | 12 | $1-1 / 2^{\prime \prime}$ | 36 | 6.5 | 9.7 | 7,200 | 3,266 | 6,480 | 2,939 |
| 9/16" | 14 | $1-3 / 4{ }^{\prime \prime}$ | 42 | 8.4 | 12.5 | 9,100 | 4,128 | 8,190 | 3,715 |
| 5/8" | 16 | 2" | 48 | 10.3 | 15.3 | 11,000 | 4,990 | 9,900 | 4,491 |
| 3/4" | 18 | 2-1/4" | 54 | 14.4 | 21.4 | 14,800 | 6,713 | 13,320 | 6,042 |
| 13/16" | 20 | 2-1/2" | 60 | 17.3 | 25.7 | 17,600 | 7,983 | 15,840 | 7,185 |
| 7/8" | 22 | 2-3/4" | 66 | 20.6 | 30.7 | 20,900 | 9,480 | 18,810 | 8,532 |
| $1{ }^{\prime \prime}$ | 24 | 3" | 72 | 25.6 | 38.1 | 25,400 | 11,521 | 22,860 | 10,369 |
| 1-1/8" | 28 | 3-1/2" | 84 | 33.0 | 49.1 | 32,800 | 14,878 | 29,520 | 13,390 |
| 1-1/4" | 30 | $3-3 / 4{ }^{\prime \prime}$ | 90 | 39.4 | 58.6 | 39,000 | 17,690 | 35,100 | 15,921 |
| 1-5/16" | 32 | $4{ }^{\prime \prime}$ | 96 | 43.3 | 64.4 | 43,000 | 19,505 | 38,700 | 17,554 |
| 1-1/2" | 36 | 4-1/2" | 108 | 56.2 | 83.6 | 54,000 | 24,494 | 48,600 | 22,045 |
| 1-5/8" | 40 | $5{ }^{\text {" }}$ | 120 | 68.0 | 101.2 | 65,000 | 29,484 | 58,500 | 26,536 |
| 1-3/4" | 44 | 5-1/2" | 132 | 78.4 | 116.7 | 75,000 | 34,020 | 67,500 | 30,618 |
| 2" | 48 | $6^{\prime \prime}$ | 144 | 99.0 | 147.3 | 94,000 | 42,638 | 84,600 | 38,375 |
| 2-1/8" | 52 | 6-1/2" | 156 | 111.3 | 165.8 | 105,000 | 47,628 | 94,500 | 42,865 |
| 2-1/4" | 56 | 7" | 168 | 128.9 | 191.8 | 120,000 | 54,432 | 108,000 | 48,989 |
| 2-1/2" | 60 | 7-1/2" | 180 | 155.7 | 231.7 | 142,000 | 64,411 | 127,800 | 57,970 |
| 2-5/8" | 64 | 8" | 192 | 170.1 | 253.1 | 156,000 | 70,762 | 140,400 | 63,685 |
| 3" | 72 | $9{ }^{\text {9 }}$ | 216 | 220.6 | 328.3 | 202,000 | 91,627 | 181,800 | 82,464 |
| 3-1/4" | 80 | 10 | 240 | 262.9 | 391.2 | 240,000 | 108,864 | 216,000 | 97,978 |

Fiber Content: Polyester and Ultra Blue ${ }^{\text {tm }}$ Fiber

Specific Gravity: $\qquad$ 1.20

Elastic Elongation
at Percentage of Break Strength:

| $10 \%$ | $20 \%$ | $30 \%$ |
| :---: | :---: | :---: |
| 1.5 | 3.2 | 4.0 |



SSR-301 $\mathrm{R}^{\text {TM }}$ is the ultimate lockline specifically designed by The American Group to virtually eliminate "slipstick" in locklines when checking barges. The 3-strand rope construction develops a high strength, lightweight and controlled smooth checking line that has double the wear life of standard lockline ropes. This is accomplished by our unique fiber and internal Resistex ${ }^{\circledR}$ lubricant.
The fiber utilized in each of the three strands of SSR$301 \mathrm{R}^{T m}$ are produced, processed and controlled by our Quality Assurance Program. This insures a documented monitoring of
base fiber materials that are used to produce this high performing product. The core fiber of each strand is orange Ultra Strong ${ }^{\text {tm }}$ copolymer yarn that is $35 \%$ stronger than standard polypropylene fiber. The core fiber of each strand then has our internally produced outer cover of high tenacity spun-filament polyester fiber plied over it.
The outer cover of spun-filament polyester allows for excellent wear and heat resistance. To enhance and maximize the rope performance we add our exclusive Resistex ${ }^{\circledR}$ lubricant to the core yarns which constantly lubricates the outer surface fibers when working loads are applied. This constant migration of Resistex ${ }^{\circledR}$ lubricant to the surface yarns maximizes rope wear life, allows consistent checking ability and minimizes heat build-up during checking.
SSR-301R is the most long-term cost effective lockline available.

## Three - Strand Product Code: 7R

## CHARACTERISTICS

- Smooth checking
- Virtually no "slipstick"
- High strength
- Excellent resistance to wear


## APPLICATIONS

- Locklines

Fiber Content: ...... Ultra Strong ${ }^{\text {Tm }}$ and Spun \& Filament Polyester Fiber

## Specific Gravity:

$\qquad$ 1.14

## Elastic Elongation

at Percentage of Break Strength:

| $10 \%$ | $20 \%$ | $30 \%$ |
| :---: | :---: | :---: |
| 2.1 | 3.5 | 4.0 |

3-STRAND SSR-301

| SIZE |  |  |  | WEIGHT |  |  | AVERAGE STRENGTH |  | MINIMUM STRENGTH |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dia. <br> Inch | Dia. <br> $\mathbf{m m}$ | Circ. <br> Inch | Circ. <br> $\mathbf{m m}$ | Lbs per <br> $\mathbf{1 0 0 ~ F t . ~}$ | $\mathbf{K g}$ per <br> $\mathbf{1 0 0} \mathbf{M}$ | $\mathbf{L b s}$ | $\mathbf{K g}$ | $\mathbf{L b s}$ | $\mathbf{K g}$ |  |
| $1-1 / 2^{\prime \prime}$ | 36 | $4-1 / 2^{\prime \prime}$ | 108 | 46.9 | 69.8 | 43,300 | 19,641 | 39,000 | 17,690 |  |
| $1-5 / 8^{\prime \prime}$ | 40 | $5 "$ | 120 | 57.5 | 85.6 | 52,000 | 23,587 | 46,800 | 21,228 |  |
| $2 "$ | 48 | $6^{\prime \prime}$ | 144 | 82.0 | 122.0 | 71,100 | 32,251 | 64,000 | 29,030 |  |

## 

A specialized synthetic rope designed for use as a ship mooring line. The unique six-strand construction develops a firmly laid rope that works exceptionally well on standard and split winch drums. The six outer strands are internally supported by a left lay three-strand nylon core.

The firm but flexible construction allows excellent handling characteristics but minimizes any "bedding" tendencies on the winch drums. The strength, weight and elongation profile make JetKore ${ }^{\circledR}$ an excellent replacement for wire or all-polyester mooring lines.

## CHARACTERISTICS

- High strength to weight ratio
- Low elongation
- Excellent wear resistance
- Light handling weight

Fiber Content: $\qquad$ Polyester, Nylon and Polyolefin Fiber

$$
\begin{aligned}
& \text { Specific Gravity: ........................ } 1.22 \\
& \text { Elastic Elongation } \\
& \text { at Percentage of Break Strength: } \\
& \begin{array}{lcc}
10 \% & 20 \% & 30 \% \\
2.7 \% & 5.0 \% & 6.9 \%
\end{array}
\end{aligned}
$$

## 6-STRAND JETKORE

| SIZE |  |  |  | WEIGHT |  | AVERAGE STRENGTH |  | MINIMUM STRENGTH |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dia. Inch | Dia. <br> mm | Circ. Inch | Circ. <br> mm | $\begin{aligned} & \text { Lbs per } \\ & 100 \mathrm{Ft} . \end{aligned}$ | $\begin{aligned} & \text { Kg per } \\ & 100 \mathrm{M} \end{aligned}$ | Lbs | Kg | Lbs | Kg |
| 2" | 48 | 6" | 144 | 113.4 | 168.8 | 100,000 | 45,360 | 90,000 | 40,854 |
| 2-1/4" | 56 | 7" | 168 | 154.6 | 230.1 | 133,300 | 60,465 | 120,000 | 54,432 |
| 2-5/8" | 64 | 8" | 192 | 206.2 | 306.9 | 177,800 | 80,650 | 160,000 | 72,576 |
| 3" | 72 | $9{ }^{1}$ | 216 | 257.7 | 383.5 | 211,100 | 95,755 | 190,000 | 86,184 |
| 3-1/4" | 80 | 10" | 240 | 319.6 | 475.6 | 255,600 | 115,940 | 230,000 | 104,328 |

## APPLICATIONS

- Ship Mooring Lines
- Harbor Towing Lines


3-Strand Nylon Fiber

Rope performance is determined by strength, stretch, wear resistance and handling flexibility characteristics.
A premium three-strand rope should be flexible but firm - thereby maximizing resistance to wear, snagging, hockling and kinking. A premium rope construction should resist effort to open the lay of the rope - higher resistance as diameter increases. The strand of the rope should be developed with
optimum balanced twist to create a firm round strand for maximum wear. The lay of the rope should be uniform and consistently smooth - otherwise the lay tension is out of balance and ultimate strength is affected. Finally, the rope should be heat set and stabilized to assist fiber, twist and lay tension formation to assure all the required characteristics are built into the rope for premium performance.
Pro-Set Nylon ${ }^{\text {TM }}$ with Pro-Gard ${ }^{\text {m }}$ marine finish is a quality, heat stabilized, four-stage, three-strand nylon rope.

## CHARACTERISTICS

- Consistent dimensionally stable balanced rope for maximum service life
- Heat stabilization pre-shrinks and sets the rope construction to yield full life flexibility
- Long-term superior wet wear and residual strength due to Pro-Gard ${ }^{T M}$ marine finish
- Stabilization and marine finish minimize rope hardening to ensure ease of rope splicing and handling


## APPLICATIONS

- Mooring Lines and Tie-Up Lines
- Anchor Lines
- Slings and Lanyards
- Shock and Tow Lines

Fiber Content: ............. Nylon

Specific Gravity: $\qquad$ 1.14

Elastic Elongation at Percentage of Break Strength:

| $10 \%$ | $20 \%$ | $30 \%$ |
| :---: | :---: | :---: |
| 5.5 | 10.0 | 12.1 |

Water Absorption
Fiber: ..................... 2\% - 5\%

## 3-STRAND PRO-SET NYLON

| SIZE |  |  |  | WEIGHT |  | AVERAGE STRENGTH |  | MINIMUM STRENGTH |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dia. <br> Inch | Dia. <br> mm | Circ. <br> Inch | Circ. <br> mm | Lbs per $100 \mathrm{Ft} .$ | Kg per 100 M | Lbs | Kg | Lbs | Kg |
| 3/16" | 5 | 9/16" | 15 | 1.0 | 1.5 | 1,300 | 590 | 1,200 | 544 |
| 1/4" | 6 | 3/4" | 18 | 1.5 | 2.2 | 1,800 | 816 | 1,600 | 726 |
| 5/16" | 8 | $1 "$ | 24 | 2.5 | 3.7 | 2,900 | 1,315 | 2,600 | 1,179 |
| 3/8" | 9 | 1-1/8" | 27 | 3.5 | 5.2 | 4,000 | 1,814 | 3,600 | 1,633 |
| 7/16" | 11 | 1-1/4" | 33 | 5.0 | 7.4 | 5,300 | 2,404 | 4,800 | 2,177 |
| 1/2" | 12 | 1-1/2" | 36 | 6.5 | 9.7 | 7,000 | 3,175 | 6,300 | 2,858 |
| 9/16" | 14 | 1-3/4" | 42 | 8.1 | 12.1 | 8,800 | 3,992 | 7,900 | 3,583 |
| 5/8" | 16 | 2" | 48 | 10.5 | 15.6 | 11,100 | 5,035 | 10,000 | 4,536 |
| 3/4" | 18 | 2-1/4" | 54 | 14.5 | 21.6 | 15,000 | 6,804 | 13,500 | 6,124 |
| 13/16" | 20 | 2-1/2" | 60 | 17.0 | 25.3 | 17,000 | 7,711 | 15,300 | 6,940 |
| 7/8" | 22 | 2-3/4" | 66 | 20.0 | 29.8 | 21,100 | 9,571 | 19,000 | 8,618 |
| $1{ }^{\prime \prime}$ | 24 | 3" | 72 | 26.0 | 38.7 | 27,800 | 12,610 | 25,000 | 11,340 |
| 1-1/16" | 26 | $3-1 / 4$ " | 78 | 29.0 | 43.2 | 30,200 | 13,699 | 27,200 | 12,338 |
| 1-1/8" | 28 | $3-1 / 2^{\prime \prime}$ | 84 | 34.0 | 50.6 | 35,600 | 16,148 | 32,000 | 14,515 |
| 1-1/4" | 30 | 3-3/4" | 90 | 40.0 | 59.5 | 41,700 | 18,915 | 37,500 | 17,010 |
| 1-5/16" | 32 | $4{ }^{\prime \prime}$ | 96 | 45.0 | 67.0 | 46,100 | 20,911 | 41,500 | 18,824 |
| 1-1/2" | 36 | 4-1/2" | 108 | 55.0 | 81.9 | 57,800 | 26,218 | 52,000 | 23,587 |
| 1-5/8" | 40 | $5{ }^{\prime \prime}$ | 120 | 66.5 | 99.0 | 70,000 | 31,752 | 63,000 | 28,577 |
| 1-3/4" | 44 | 5-1/2" | 132 | 83.0 | 123.5 | 86,700 | 39,327 | 78,000 | 35,381 |
| $2{ }^{\prime \prime}$ | 48 | $6{ }^{\prime \prime}$ | 144 | 95.0 | 141.4 | 98,900 | 44,861 | 89,000 | 40,370 |
| 2-1/8" | 52 | 6-1/2" | 156 | 109.0 | 162.2 | 112,200 | 50,894 | 101,000 | 45,814 |
| 2-1/4" | 56 | $7{ }^{\prime \prime}$ | 168 | 129.0 | 192.0 | 134,400 | 60,964 | 121,000 | 54,886 |
| 2-1/2" | 60 | 7-1/2" | 180 | 149.0 | 221.7 | 150,000 | 68,040 | 135,000 | 61,236 |
| 2-5/8" | 64 | 8" | 192 | 168.0 | 250.0 | 170,000 | 77,112 | 153,000 | 69,401 |
| 2-3/4" | 68 | 8-1/2" | 204 | 189.0 | 281.3 | 192,200 | 87,182 | 173,000 | 78,473 |
| 3" | 72 | $9{ }^{1}$ | 216 | 210.0 | 312.5 | 211,100 | 95,755 | 190,000 | 86,184 |
| 3-1/4" | 80 | $10^{\prime \prime}$ | 240 | 264.0 | 392.9 | 266,700 | 120,975 | 240,000 | 108,864 |

Sizes 3/16" through 5/16" diameter are produced in a 3-stage, regular lay construction.

## 昆

 ULTRA BLUE M: Mim

Ultra Blue ${ }^{\text {t" }}$ rope constructions are truly a major development in comparison to polypropylene ropes. Ulitra Bluet ${ }^{\text {t" }}$ ropes utilize our proprietary Ultra Blue" ${ }^{\text {t" }}$ copolymer olefin fiber. This maximum strength fiber creates ropes that are 30 to $35 \%$ higher strength than equivalent polypropylene construction. This fiber gives Ulitra Blue"' ropes up to three times the wear life over polypropylene. The unique fiber surface develops excellent grip capability while adding to the surface wear life. The overall strength and wear features give the

## CHARACTERISTICS

- $30-35 \%$ stronger than polypropylene
- Floats
- Superior ultraviolet resistance over polypropylene
- Excellent flex wear resistance
- Non-torque construction


## APPLICATIONS

- Floating Tow Lines
- Mooring and Tie-Up Lines
- SPM Mooring Pick-Up Lines opportunity of down-sizing while maintaining longer wear life over standard polypropylene ropes.


## Fiber Content: ...Ulitra Blue' ${ }^{\text {m }}$ Fiber Specific Gravity: <br> $\qquad$ .94 (Floats)

## Elastic Elongation

at Percentage of Break Strength:
10\% 20\% 30\%

| 1.7 | 3.5 | 4.2 |
| :--- | :--- | :--- |

## 8-STRAND ULTRA BLUE

| SIZE |  |  |  | WEIGHT |  | AVERAGE STRENGTH |  | MINIMUM STRENGTH |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Dia. } \\ & \text { Inch } \end{aligned}$ | Dia. mm | $\begin{aligned} & \hline \text { Circ. } \\ & \text { Inch } \\ & \hline \end{aligned}$ | Circ. mm | $\begin{aligned} & \text { Lbs per } \\ & 100 \mathrm{Ft} . \end{aligned}$ | $\begin{aligned} & \hline \mathrm{Kg} \text { per } \\ & 100 \mathrm{M} \end{aligned}$ | Lbs | Kg | Lbs | Kg |
| 1-5/8" | 40 | $5{ }^{\text {" }}$ | 120 | 52.6 | 78.3 | 58,000 | 26,309 | 52,200 | 23,678 |
| 1-3/4" | 44 | 5-1/2 ${ }^{1}$ | 132 | 61.9 | 92.1 | 69,000 | 31,298 | 62,100 | 28,169 |
| 2" | 48 | $6{ }^{\prime \prime}$ | 144 | 73.2 | 108.9 | 82,000 | 37,195 | 73,800 | 33,476 |
| 2-1/8" | 52 | 6-1/2 ${ }^{1}$ | 156 | 86.6 | 128.9 | 90,000 | 40,824 | 81,000 | 36,742 |
| 2-1/4" | 56 | $7{ }^{\prime \prime}$ | 168 | 101.0 | 150.3 | 109,000 | 49,442 | 98,100 | 44,498 |
| 2-1/2" | 60 | 7-1/2 ${ }^{1}$ | 180 | 115.5 | 171.9 | 125,000 | 56,700 | 112,500 | 51,030 |
| 2-5/8" | 64 | 8" | 192 | 130.9 | 194.8 | 140,000 | 63,504 | 126,000 | 57,154 |
| $3^{\prime \prime}$ | 72 | $9^{91}$ | 216 | 168.0 | 250.0 | 176,000 | 79,834 | 158,400 | 71,850 |
| 3-1/4" | 80 | 101 | 240 | 208.2 | 309.8 | 216,000 | 97,978 | 194,400 | 88,180 |
| 3-5/8" | 88 | 111 | 264 | 249.5 | 371.3 | 257,000 | 116,575 | 231,300 | 104,918 |
| $4{ }^{4}$ | 96 | $12^{\prime \prime}$ | 288 | 293.8 | 437.2 | 305,000 | 138,348 | 274,500 | 124,513 |

## $\square \square \square \square \square \square \sqrt{ }{ }^{\circledR}$ Eight - Strand Product Code: 6P



Ultraline ${ }^{\circledR}$ is produced from our exclusive high tenacity orange Ultra ${ }^{\text {Tm }}$ olefin fiber. This non-torquing high tenacity rope has excellent wear and floats. Its strength is 20 to $25 \%$ higher than standard yellow eight-strand polypropylene ropes with twice the wear life. The unique orange color with the proprietary red and green
I.D. markers give high product visibility and identification. The accepted performance features of Ultraline ${ }^{\circledR}$ are proven reasons why it is an economical replacement for traditional eight-strand polypropylene.

## CHARACTERISTICS

- Two times the wear life of polypropylene
- Excellent visibility
- 20 to $25 \%$ stronger than polypropylene
- Superior sunlight resistant polypropylene due to our SL-5 ultraviolet inhibitors


## APPLICATIONS

- Mooring and Tie-Up Lines
- Floating Tow Lines
- SPM Mooring Pick-Up Lines
- Barge Lines

| Fiber Content: .......... Ultra ${ }^{\text {rm }}$ Fibe |  |  |
| :---: | :---: | :---: |
| Specific Gravity: ........ . 91 (Floats) |  |  |
| Elastic at Perce |  |  |
| $\begin{gathered} 10 \% \\ 2.3 \end{gathered}$ | $\begin{gathered} 20 \% \\ 3.0 \end{gathered}$ | $\begin{gathered} 30 \% \\ 4.7 \end{gathered}$ |

8-Strand
Polyester Fiber
Outside with
Ulira Blue ${ }^{\text {m" }}$ Fiber
Inside

The maximum strength and wear resistant combination rope produced. SSR-1200 ${ }^{\text {TM }}$ ropes are a compound plied yarn construction that utilizes the ultimate compatibility of filament polyester and Ultra Blue ${ }^{\text {Tm }}$ fibers. The unique combination allows strength and wear life equal to an all-polyester rope with significant weight reduction. Its service life advantages have been proven in operational use not just in our laboratory testing. Based on weight, strength and service wear life it is the maximum combination rope available. The red and green I.D. markers and blue center yarns make it an SSR-1200 ${ }^{\text {TM }}$ product.

## CHARACTERISTICS

- Highest wear and strength combination rope available
- $20 \%$ lower weight than polyester ropes
- Low working elongation
- Superior flex wear resistance
- Non-torque construction


## APPLICATIONS

- Mooring and Tie-Up Lines
- Mooring Pendants
- Tug Assist Lines

| 8-STRAND SSR-1200 |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SIZE |  |  |  | WEIGHT |  | AVERAGE STRENGTH |  | MINIMUM STRENGTH |  |
| Dia. Inch | Dia. mm | $\begin{aligned} & \text { Circ. } \\ & \text { Inch } \end{aligned}$ | Circ. mm | $\begin{aligned} & \text { Lbs per } \\ & 100 \mathrm{Ft} . \end{aligned}$ | $\begin{aligned} & \text { Kg per } \\ & 100 \mathrm{M} \\ & \hline \end{aligned}$ | Lbs | Kg | Lbs | Kg |
| 1-5/8" | 40 | $5{ }^{\text {" }}$ | 120 | 68.0 | 101.2 | 68,000 | 30,845 | 61,200 | 27,760 |
| 1-3/4" | 44 | 5-1/2" | 132 | 78.4 | 116.7 | 79,000 | 35,834 | 71,100 | 32,251 |
| 2" | 48 | $6^{\prime \prime}$ | 144 | 99.0 | 147.3 | 99,000 | 44,906 | 89,100 | 40,416 |
| 2-1/8" | 52 | 6-1/2" | 156 | 111.3 | 165.6 | 110,000 | 49,896 | 99,000 | 44,906 |
| 2-1/4" | 56 | 7" | 168 | 128.9 | 191.8 | 126,000 | 57,154 | 113,400 | 51,438 |
| 2-1/2" | 60 | 7-1/2" | 180 | 155.7 | 231.7 | 150,000 | 68,040 | 135,000 | 61,236 |
| 2-5/8 ${ }^{\text {" }}$ | 64 | 8" | 192 | 170.1 | 253.1 | 164,000 | 74,390 | 147,600 | 66,951 |
| 3" | 72 | $9^{\prime \prime}$ | 216 | 220.6 | 328.3 | 212,000 | 96,163 | 190,800 | 86,547 |
| 3-1/4" | 80 | $10^{10}$ | 240 | 262.9 | 391.2 | 252,000 | 114,307 | 226,800 | 102,876 |
| 3-5/8" | 88 | 111 | 264 | 326.8 | 486.3 | 312,000 | 141,523 | 280,800 | 127,371 |
| $4^{4}$ | 96 | 12" | 288 | 396.9 | 590.7 | 374,000 | 169,646 | 336,600 | 152,682 | OUM PO 0 LY ESTE R

A four-stage, eight-strand plaited construction made of high tenacity polyester with Pro-Gard ${ }^{\text {Tm }}$ marine finish. This non-torque construction offers excellent strength, low stretch and superior wear. The Pro-Gard ${ }^{\text {m }}$ marine finish creates maximum wear life and assists in maintaining full life flexibility.

## CHARACTERISTICS

- High strength and low stretch
- Excellent wear
- Balanced, nonrotational construction


## APPLICATIONS

- Mooring and Tie-Up Lines
- Mooring Pendants

| 8-STRAND PREMIUM POLYESTER |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SIZE |  |  |  | WEIGHT |  | AVERAGE STRENGTH |  | MINIMUM STRENGTH |  |
| Dia. Inch | Dia. mm | Circ. Inch | Circ. mm | $\begin{aligned} & \text { Lbs per } \\ & 100 \mathrm{Ft} . \end{aligned}$ | $\begin{aligned} & \hline \mathrm{Kg} \text { per } \\ & 100 \mathrm{M} \\ & \hline \end{aligned}$ | Lbs | Kg | Lbs | Kg |
| 1-5/8" | 40 | $5{ }^{\text {" }}$ | 120 | 84.5 | 125.8 | 82,200 | 37,286 | 74,000 | 33,566 |
| 1-3/4" | 44 | 5-1/2" | 132 | 101.0 | 150.3 | 98,300 | 44,589 | 88,500 | 40,144 |
| 2" | 48 | 6" | 144 | 121.6 | 181.0 | 115,600 | 52,436 | 104,000 | 47,174 |
| 2-1/8" | 52 | 6-1/2" | 156 | 139.2 | 207.2 | 133,300 | 60,465 | 120,000 | 54,432 |
| 2-1/4" | 56 | $7{ }^{7}$ | 168 | 161.2 | 240.9 | 153,300 | 69,537 | 138,000 | 62,597 |
| 2-1/2" | 60 | 7-1/2" | 180 | 186.6 | 277.7 | 175,600 | 79,652 | 158,000 | 71,669 |
| 2.5/8" | 64 | $8^{\prime \prime}$ | 192 | 210.3 | 313.0 | 197,800 | 89,722 | 178,000 | 80,741 |
| 2-7/8" | 68 | 8-1/2" | 204 | 237.1 | 352.9 | 220,000 | 99,792 | 198,000 | 89,813 |
| $3^{\prime \prime}$ | 72 | 9" | 216 | 266.0 | 395.9 | 244,400 | 110,860 | 220,000 | 99,792 |
| 3-1/4" | 80 | $10^{\prime \prime}$ | 240 | 327.8 | 487.8 | 300,000 | 136,080 | 270,000 | 122,472 |
| 3-5/8" | 88 | $11 "$ | 264 | 395.9 | 589.2 | 361,100 | 163,795 | 325,000 | 147,420 |
| $4^{4 \prime}$ | 96 | 12" | 288 | 468.0 | 696.5 | 435,600 | 197,588 | 392,000 | 177,811 |


| Fiber Content: ......Polyester <br> Fiber |  |  |
| :---: | :---: | :---: |
| Specific Gravity: ......... 1.38 |  |  |
| Elastic Elongation |  |  |
| at Percentage of Break |  |  |
| $10 \%$ | $20 \%$ | $30 \%$ |
| 3.0 | 5.0 | 7.7 |

Water Absorption Fiber:
1 to $2 \%$


Pro-Set ${ }^{\text {Tm }}$ Nylon with Pro-Gard ${ }^{\text {Tm }}$ marine finish is a quality heat stabilized four-stage, eight-strand rope. Each strand of the rope is developed with optimum balanced twist to create firm strands for maximum wear. This non-torque construction of premium nylon offers high strength with excellent shock mitigation.

Eight - Strand Product Code: 32

## CHARACTERISTICS

- Consistent dimensionally stable balanced rope for maximum service life
- Long-term superior wet wear and residual strength due to Pro-Gard ${ }^{\text {m }}$ marine finish
- Heat stabilization pre-shrinks and sets the rope construction to yield full life flexibility

| SIZE |  |  |  | WEIGHT |  | AVERAGE STRENGTH |  | MINIMUM STRENGTH |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Dia. } \\ & \text { Inch } \end{aligned}$ | Dia. mm | $\begin{aligned} & \hline \text { Circ. } \\ & \text { Inch } \end{aligned}$ | Circ. mm | $\begin{aligned} & \text { Lbs per } \\ & 100 \mathrm{Ft} . \end{aligned}$ | $\begin{aligned} & \mathrm{Kg} \text { per } \\ & 100 \mathrm{M} \end{aligned}$ | Lbs | Kg | Lbs | Kg |
| 1-5/8" | 40 | 5" | 120 | 69.3 | 103.1 | 75,600 | 34,292 | 68,000 | 30,845 |
| 1-3/4" | 44 | 5-1/2" | 132 | 86.5 | 128.7 | 93,300 | 42,321 | 84,000 | 38,102 |
| 2" | 48 | $6^{\prime \prime}$ | 144 | 99.0 | 147.3 | 106,700 | 48,399 | 96,000 | 43,546 |
| 2-1/8" | 52 | 6-1/2 ${ }^{1}$ | 156 | 113.5 | 168.9 | 121,100 | 54,931 | 109,000 | 49,442 |
| 2-1/4" | 56 | 7" | 168 | 134.4 | 200.0 | 144,400 | 65,500 | 130,000 | 58,968 |
| 2-1/2" | 60 | 7-1/2 ${ }^{1}$ | 180 | 155.2 | 231.0 | 162,200 | 73,574 | 146,000 | 66,226 |
| 2-5/8" | 64 | 8" | 192 | 175.0 | 260.4 | 183,300 | 83,145 | 165,000 | 74,844 |
| 2-7/8" | 68 | 8-1/2 ${ }^{1}$ | 204 | 196.9 | 293.0 | 206,700 | 93,759 | 186,000 | 84,370 |
| 3" | 72 | $9^{17}$ | 216 | 218.8 | 325.6 | 227,800 | 103,330 | 205,000 | 92,988 |
| 3-1/4" | 80 | $10^{\prime \prime}$ | 240 | 275.0 | 409.3 | 286,700 | 130,047 | 258,000 | 117,029 |
| 3-5/8" | 88 | 111 | 264 | 325.0 | 483.7 | 337,800 | 153,226 | 304,000 | 137,894 |
| $4^{4 \prime}$ | 96 | 12" | 288 | 395.8 | 589.0 | 405,600 | 183,980 | 365,000 | 165,564 |
| 4-1/4" | 104 | $13^{\prime \prime}$ | 312 | 463.5 | 689.0 | 477,800 | 216,730 | 430,000 | 195,048 |
| 4-5/8" | 112 | $14^{\prime \prime}$ | 342 | 541.7 | 806.2 | 564,400 | 256,012 | 508,000 | 230,429 |
| $5{ }^{5}$ | 120 | $15^{\prime \prime}$ | 360 | 614.6 | 914.6 | 638,900 | 289,805 | 575,000 | 260,820 |
| 5-1/4" | 128 | $16^{\prime \prime}$ | 384 | 703.1 | 1,046.4 | 716,700 | 325,095 | 645,000 | 292,572 |
| 5-1/2" | 136 | $17^{\prime \prime}$ | 429 | 796.9 | 1,185.9 | 775,600 | 351,812 | 698,000 | 316,613 |
| $6^{17}$ | 144 | 18" | 432 | 895.8 | 1,331.1 | 886,700 | 402,207 | 780,000 | 353,808 |

- Stabilization and marine finish minimize rope hardening to ensure ease of rope splicing and handling


## APPLICATIONS

- Mooring Lines
- Shock and Tow Lines
- Mooring Pendants

| Fiber Content: ........... Nylon $\begin{array}{r}\text { Fiber }\end{array}$ |  |  |
| :---: | :---: | :---: |
| Specific Gravity: ......... 1.14 |  |  |
| Elastic Elongation at Percentage of Break Strength: |  |  |
| $\begin{gathered} 10 \% \\ 5.0 \end{gathered}$ | $20 \%$ 10.2 | $30 \%$ 12.0 |

## COMPARISON CHARTS <br> AVERAGE STRENGTHS IN POUNDS

## 3-STRAND ROPES

| Diameter | Ultraline | Ultra Blue | SSR-100 | Pro-Master | $\begin{aligned} & \text { SSR- } \\ & 1200 \end{aligned}$ | SSR-301R | Pro-Set Nylon | 6-STRAND JetKore | Diameter |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3/16" | - | - | 1,000 | - |  | - | 1,300 | - | 3/16" |
| 1/4" | 1,600 | 1,700 | 1,800 | - | 2,200 | - | 1,800 | - | 1/4" |
| 5/16" | 2,300 | 2,600 | 2,800 | - | 3,400 | - | 2,900 | - | 5/16" |
| 3/8" | 3,500 | 3,700 | 4,100 | - | 4,600 | - | 4,000 | - | 3/8" |
| 7/16" | 4,600 | 4,600 | 5,100 | - | 5,700 | - | 5,300 | - | 7/16" |
| 1/2" | 5,400 | 6,100 | 6,900 | 5,800 | 7,200 | - | 7,000 | - | 1/2" |
| 9/16" | 6,600 | 8,400 | 9,100 | - | 9,100 | - | 8,800 | - | 9/16" |
| 5/8" | 8,100 | 10,600 | 10,000 | 8,200 | 11,000 | - | 11,100 | - | 5/8" |
| 3/4" | 11,000 | 12,000 | 14,500 | 10,800 | 14,800 | - | 15,000 | - | 3/4" |
| 13/16" | - | - | - | - | 17,600 | - | 17,000 | - | 13/16" |
| 7/8" | 15,000 | 18,000 | 18,700 | 15,500 | 20,900 | - | 21,100 | - | 7/8" |
| $1{ }^{\prime \prime}$ | 18,400 | 22,600 | 23,750 | 18,700 | 25,400 | - | 27,800 | - | $1{ }^{\prime \prime}$ |
| 1-1/16" | - | - | - | - | - | - | 30,200 | - | 1-1/16" |
| 1-1/8" | 24,300 | 26,600 | 26,600 | - | 32,800 | - | 35,600 | - | 1-1/8" |
| 1-1/4" | 27,400 | 33,000 | 31,000 | - | 39,000 | - | 41,700 | - | 1-1/4" |
| 1-5/16" | - | - | - | - | 43,000 | - | 46,100 | - | 1-5/16" |
| 1-1/2" | 38,900 | 37,000 | - | - | 54,000 | 43,300 | 57,800 | - | 1-1/2" |
| 1-5/8" | 47,200 | 42,000 | - | - | 65,000 | 52,000 | 70,000 | - | 1-5/8" |
| 1-3/4" | 58,300 | 55,000 | - | - | 75,000 | - | 86,700 | - | 1-3/4" |
| 2" | 67,800 | 65,000 | - | - | 94,000 | 71,100 | 98,900 | 100,000 | 2" |
| 2-1/8" | 78,900 | 78,000 | - | - | 105,000 | - | 112,200 | - | 2-1/8" |
| 2-1/4" | 90,000 | 85,000 | - | - | 120,000 | - | 134,400 | 133,300 | 2-1/4" |
| 2-1/2" | 104,400 | 103,000 | - | - | 142,000 | - | 150,000 | - | 2-1/2" |
| 2-5/8" | 117,200 | 118,000 | - | - | 156,000 | - | 170,000 | 177,800 | 2-5/8" |
| 2-3/4" | 133,300 | 133,000 | - | - | - | - | 192,200 | - | 2-3/4" |
| 3" | 147,800 | 167,000 | - | - | 202,000 | - | 211,100 | 211,100 | 3" |
| 3-1/4" | 177,800 | 205,000 | - | - | 240,000 | - | 266,700 | 255,600 | 3-1/4" |

8-STRAND ROPES

| Diameter | Ultraline | Ulitra Blue | SSR-1200 | $\begin{aligned} & \text { Pro-Set } \\ & \text { Nylon } \\ & \hline \end{aligned}$ | Polyester | Diameter |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1-5/8" | 49,400 | 58,000 | 68,000 | 75,600 | 82,200 | 1-5/8" |
| 1-3/4" | 61,100 | 69,000 | 79,000 | 93,300 | 98,300 | 1-3/4" |
| 2" | 71,100 | 82,000 | 99,000 | 106,700 | 115,600 | 2" |
| 2-1/8" | 82,200 | 90,000 | 110,000 | 121,100 | 133,300 | 2-1/8" |
| 2-1/4" | 94,400 | 109,000 | 126,000 | 144,400 | 153,300 | 2-1/4" |
| 2-1/2" | 108,900 | 125,000 | 150,000 | 162,200 | 175,600 | 2-1/2" |
| 2-5/8" | 122,200 | 140,000 | 164,000 | 183,300 | 197,800 | 2-5/8" |
| 2-3/4" | 138,900 | - | - | 206,700 | 220,000 | 2-3/4" |
| 3" | 154,400 | 176,000 | 212,000 | 227,800 | 244,400 | 3" |
| 3-1/4" | 186,700 | 216,000 | 252,000 | 286,700 | 300,000 | 3-1/4" |
| 3-5/8" | 220,000 | 257,000 | 312,000 | 337,800 | 361,100 | 3-5/8" |
| 4" | 258,900 | 305,000 | 374,000 | 405,600 | 435,600 | 4" |
| 4-1/4" | 304,400 | - | - | 477,800 | - | 4-1/4" |
| 4-5/8" | 335,600 | - | - | 564,400 | - | 4-5/8" |
| 5" | 377,800 | - | - | 638,900 | - | 5" |
| 5-1/4" | 427,800 | - | - | 716,700 | - | 5-1/4" |
| 5-1/2" | 482,200 | - | - | 775,600 | - | 5-1/2" |
| $6{ }^{\prime \prime}$ | 524,400 | - | - | 866,700 | - | $6{ }^{\prime \prime}$ |



## 12-Strand <br> Round Plaif ${ }^{7}$

 Ulira Blue ${ }^{\text {tw }}$ Fiber.A firm twelve-strand braided rope construction that has high strength and floats. The distinct blue color is created by our exclusive copolymer Ultra Blue ${ }^{\text {Tw }}$ olefin fiber. This product has maximum wear life due to the firm round flexibility of the construction and the superior wear resistance of our proprietary fiber. The product's wear life is further enhanced due to our SL- $5^{T \mathrm{~m}}$ ultraviolet inhibitor which maximizes the rope's resistance to sunlight degradation. All Round Plait ${ }^{\text {tw }}$ ropes are easily spliced using a standard tuck splice procedure.

## CHARACTERISTICS

- High strength floating rope
- Excellent resistance to ultraviolet light
- Flexible non-rotating rope
- Superior wear life


## APPLICATIONS

- Mooring Line
- Floating Tow Line
- Tie-Up Lines


Water Absorption Fiber: None

| ROUND PLAIT ULTRA BLUE |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SIZE |  |  |  | WEIGHT |  | AVERAGE STRENGTH |  | MINIMUM STRENGTH |  |
| Dia. Inch | Dia. <br> mm | Circ. Inch | Circ. mm | $\begin{aligned} & \text { Lbs per } \\ & 100 \mathrm{Ft} . \end{aligned}$ | $\begin{aligned} & \mathrm{Kg} \text { per } \\ & 100 \mathrm{M} \end{aligned}$ | Lbs | Kg | Lbs | Kg |
| $3 / 4{ }^{\prime \prime}$ | 18 | 2-1/4" | 54 | 12.5 | 18.6 | 13,500 | 6,124 | 12,200 | 5,534 |
| 7/8" | 22 | 2-3/4" | 66 | 17.0 | 25.3 | 20,000 | 9,072 | 18,000 | 8,165 |
| $1{ }^{1 /}$ | 24 | 3" | 72 | 23.3 | 34.7 | 25,000 | 11,340 | 22,500 | 10,206 |
| 1-1/8" | 28 | 3-1/2" | 84 | 25.5 | 37.9 | 27,000 | 12,247 | 24,300 | 11,022 |
| 1-1/4" | 30 | 3-3/4" | 90 | 35.0 | 52.1 | 38,000 | 17,237 | 34,200 | 15,513 |
| 1-5/16" | 32 | 4" | 96 | 38.0 | 56.6 | 43,000 | 19,505 | 38,700 | 17,554 |
| 1-1/2" | 36 | 4-1/2" | 108 | 44.0 | 65.5 | 47,000 | 21,319 | 42,300 | 19,187 |
| 1-5/8" | 40 | 5" | 120 | 54.0 | 80.4 | 61,000 | 27,670 | 54,900 | 24,903 |
| 1-3/4" | 44 | 5-1/2" | 132 | 64.0 | 95.2 | 73,000 | 33,113 | 65,700 | 29,802 |
| $2^{\prime \prime}$ | 48 | $6^{\prime \prime}$ | 144 | 74.0 | 110.1 | 85,000 | 38,556 | 76,500 | 34,700 |
| 2-1/8" | 52 | 6-1/2" | 156 | 87.0 | 129.5 | 95,000 | 43,092 | 85,500 | 38,783 |
| 2-1/4" | 56 | $7{ }^{\prime \prime}$ | 168 | 101.0 | 150.3 | 110,000 | 49,896 | 99,000 | 44,906 |
| 2-1/2" | 60 | 7-1/2" | 180 | 117.0 | 174.1 | 130,000 | 58,968 | 117,000 | 53,071 |
| 2-5/8" | 64 | 8" | 192 | 133.0 | 197.9 | 145,000 | 65,72 | 130,500 | 59,195 |
| 2-3/4" | 68 | 8-1/2" | 204 | 148.0 | 220.3 | 157,000 | 71,215 | 141,300 | 64,094 |
| $3^{\prime \prime}$ | 72 | $9{ }^{\text {9 }}$ | 216 | 169.0 | 251.5 | 180,000 | 81,648 | 162,000 | 73,483 |
| 3-1/4" | 80 | 10" | 240 | 215.0 | 320.0 | 227,000 | 102,967 | 204,300 | 92,670 |
| 3-5/8" | 88 | 111 | 264 | 250.0 | 372.1 | 265,000 | 120,204 | 238,500 | 108,184 |
| $4{ }^{4}$ | 96 | 12 " | 288 | 297.0 | 442.0 | 315,000 | 142,884 | 283,500 | 128,596 |



A balanced łwelve-strand braid with each strand comprised of a compound yarn construction of high tenacity polyester plied over Ultra Blue ${ }^{\text {Tw }}$ fiber. The construction offers very high strength with low handling weight and is an excellent replacement for heavier all-polyester ropes. The wet wear resistance of SSR-1200 ${ }^{\text {Tm }}$ is maximized due to the application of Pro-Gard ${ }^{\text {Tm }}$ marine finish. This firm flexible non-torque rope has excellent handling qualities and is easily spliced with a standard tuck splice procedure. The blue center strand yarns make it an SSR-1200 ${ }^{\text {m/ }}$ product.

## CHARACTERISTICS

- Excellent wear life
- High strength, low stretch
- Non-rotating and easily spliced


## APPLICATIONS

- Tug Assist Lines
- Mooring and Pendant Lines
- Barge Tie-Up Lines

| Fiber Content: $\qquad$ Polyester and Ultra Blue ${ }^{\text {TM }}$ Fiber |  |  |
| :---: | :---: | :---: |
| Specific Gravity: ..................... 1.20 |  |  |
| Elastic Elongation at Percentage of Break Strength: |  |  |
| $\begin{aligned} & 10 \% \\ & 1.46 \end{aligned}$ | $\begin{aligned} & 20 \% \\ & 2.58 \end{aligned}$ | $\begin{aligned} & 30 \% \\ & 4.04 \end{aligned}$ |
| Water Absorption Fiber: ...... 1 to 2\% |  |  |


| ROUND PLAT SSR-1200 |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SIZE |  |  |  | WEIGHT |  | AVERAGE STRENGTH |  | MINIMUM STRENGTH |  |
| Dia. <br> Inch | Dia. mm | Circ. Inch | $\begin{aligned} & \hline \text { Circ. } \\ & \mathrm{mm} \\ & \hline \end{aligned}$ | Lbs per 100 Ft . | Kg per <br> 100 M | Lbs | Kg | Lbs | Kg |
| 3/4" | 18 | 2-1/4" | 54 | 16.0 | 23.8 | 16,000 | 7,258 | 14,400 | 6,532 |
| 7/8" | 22 | 2-3/4" | 66 | 24.0 | 35.7 | 24,000 | 10,886 | 21,600 | 9,798 |
| 1" | 24 | 3" | 72 | 30.0 | 44.6 | 28,000 | 12,701 | 25,200 | 11,431 |
| 1-1/8" | 28 | $3-1 / 2{ }^{\prime \prime}$ | 84 | 35.0 | 52.1 | 36,000 | 16,330 | 32,400 | 14,697 |
| 1-1/4" | 30 | $3-3 / 4$ " | 90 | 39.0 | 58.0 | 42,000 | 19,051 | 37,800 | 17,146 |
| 1-5/16" | 32 | $4{ }^{4}$ | 96 | 47.0 | 69.9 | 48,000 | 21,773 | 43,200 | 19,596 |
| 1-1/2" | 36 | 4-1/2" | 108 | 60.0 | 89.3 | 60,000 | 27,216 | 54,000 | 24,494 |
| 1-5/8" | 40 | 5" | 120 | 72.0 | 107.2 | 72,000 | 32,659 | 64,800 | 29,393 |
| 1-3/4" | 44 | 5-1/2" | 132 | 84.0 | 125.0 | 84,000 | 38,102 | 75,600 | 34,292 |
| 2" | 48 | 6" | 144 | 102.0 | 151.8 | 102,000 | 46,267 | 91,800 | 41,640 |
| 2-1/8" | 52 | 6-1/2" | 156 | 120.0 | 178.6 | 120,000 | 54,432 | 108,000 | 48,989 |
| 2-1/4" | 56 | 7" | 168 | 136.0 | 202.4 | 139,000 | 63,050 | 125,100 | 56,745 |
| 2-1/2" | 60 | 7-1/2" | 180 | 160.0 | 238.1 | 163,000 | 73,937 | 146,700 | 66,543 |
| 2-5/8" | 64 | 8" | 192 | 176.0 | 261.9 | 175,000 | 79,380 | 157,500 | 71,442 |
| 2-3/4" | 68 | 8-1/2" | 204 | 199.0 | 296.2 | 204,000 | 92,534 | 183,600 | 83,281 |
| 3" | 72 | $9{ }^{10}$ | 216 | 231.0 | 343.8 | 230,000 | 104,328 | 207,000 | 93,895 |
| $3-1 / 4^{\prime \prime}$ | 80 | 10" | 240 | 286.0 | 425.6 | 280,000 | 127,008 | 252,000 | 114,307 |
| 3-5/8" | 88 | 111 | 264 | 342.0 | 509.0 | 340,000 | 154,224 | 306,000 | 138,802 |
| $4{ }^{\prime \prime}$ | 96 | 12" | 288 | 413.0 | 614.6 | 410,000 | 185,976 | 369,000 | 167,378 |



12-Strand Round Plait ${ }^{\text {wo }}$ Nylon Fiber

By incorporating our Parallay ${ }^{\text {Tu }}$ twisting process and Pro-Gard ${ }^{\text {m }}$ marine finish to this nylon rope, high strength and long wearlife are developed for this high energy absorbing product. This unique construction provides a firm, flexible rope with maximum bearing surface for superior handling and wear. For peak dynamic loads during towing or mooring operations, Round Plait ${ }^{\text {tm }}$ Nylon offers excellent shock mitigating properties. The product is easily spliced by a standard tuck splice procedure.

## CHARACTERISTICS

- High strength and shock mitigation
- Excellent wet strength retention
- Superior wet wear
- Easily spliced


## APPLICATIONS

- Towing and Shock Lines
- Mooring and Pendant Lines
- Deep Water Buoy Lines

| Fiber Content: ............Nylon <br> Fiber |
| :---: |
| Specific Gravity: .......... 1.14 |

## Water Absorption Fiber:

$2 \%$ to $5 \%$

| ROUND PLAIT NYLON |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SIZE |  |  |  | WEIGHT |  | AVERAGE STRENGTH |  | MINIMUM STRENGTH |  |
| Dia. Inch | Dia. <br> mm | circ. Inch | Circ. mm | $\begin{aligned} & \text { Lbs per } \\ & 100 \mathrm{Ft} . \end{aligned}$ | $\mathrm{Kg} \text { per }$ $100 \mathrm{M}$ | Lbs | Kg | Lbs | Kg |
| 3/4" | 18 | 2-1/4" | 54 | 15.0 | 22.3 | 18,400 | 8,346 | 16,600 | 7,530 |
| 7/8" | 22 | 2-3/4" | 66 | 22.6 | 33.6 | 27,600 | 12,519 | 24,800 | 11,249 |
| $1 "$ | 24 | 3" | 72 | 26.3 | 39.1 | 32,200 | 14,606 | 29,000 | 13,154 |
| 1-1/8" | 28 | $3-1 / 2^{\prime \prime}$ | 84 | 33.8 | 50.3 | 41,400 | 18,779 | 37,300 | 16,919 |
| 1-1/4" | 30 | $3-3 / 4{ }^{\prime \prime}$ | 90 | 39.5 | 58.8 | 48,300 | 21,909 | 43,500 | 19,732 |
| 1-5/16" | 32 | $4{ }^{4}$ | 96 | 45.1 | 67.1 | 55,200 | 25,039 | 49,700 | 22,544 |
| 1-1/2" | 36 | 4-1/2' | 108 | 56.4 | 83.9 | 69,000 | 31,298 | 62,100 | 28,169 |
| 1-5/8" | 40 | $5{ }^{\text {" }}$ | 120 | 67.7 | 100.8 | 82,800 | 37,558 | 74,500 | 33,793 |
| 1-3/4" | 44 | 5-1/2' | 132 | 79.0 | 117.6 | 96,600 | 43,818 | 86,900 | 39,418 |
| 2" | 48 | $6{ }^{\prime}$ | 144 | 95.9 | 142.7 | 117,000 | 53,071 | 105,300 | 47,764 |
| 2-1/8" | 52 | 6-1/2" | 156 | 113.0 | 168.2 | 138,000 | 62,597 | 124,200 | 56,337 |
| 2-1/4" | 56 | $7{ }^{7}$ | 168 | 135.0 | 20.9 | 166,000 | 75,298 | 149,400 | 67,768 |
| 2-1/2" | 60 | 7-1/2' | 180 | 152.0 | 226.2 | 186,000 | 84,370 | 167,400 | 75,933 |
| 2-5/8" | 64 | 8" | 192 | 169.0 | 251.5 | 207,000 | 93,895 | 186,300 | 84,506 |
| 2-3/4" | 68 | 8-1/2" | 204 | 192.0 | 285.7 | 235,000 | 106,596 | 211,500 | 95,936 |
| 3" | 72 | $9{ }^{\text {" }}$ | 216 | 220.0 | 327.4 | 269,000 | 122,018 | 242,100 | 109,817 |
| 3-1/4" | 80 | 10 | 240 | 271.0 | 403.3 | 315,000 | 142,884 | 283,500 | 128,596 |
| 3-5/8" | 88 | 11 | 264 | 321.0 | 477.7 | 372,000 | 168,739 | 334,800 | 151,865 |
| $4{ }^{\prime \prime}$ | 96 | 12" | 288 | 389.0 | 578.9 | 449,000 | 203,666 | 404,100 | 183,300 |



> 12-Strand Round Plaif" Polyester Fiber

Constructed by urilizing our exclusive Duron ${ }^{\text {t" }}$ processing technology with Parallay ${ }^{\text {m" }}$ plying. This high tenacity twelve-strand polyester provides superior strength and wear. The firm, Round Plait ${ }^{\text {™ }}$ construction is further enhanced for wet wear resistance and maintenance of service life flexibility through the application of Pro-Gard ${ }^{\text {ma }}$ marine finish. The Round Plait ${ }^{\text {tw }}$ construction affords maximum bearing surface for excellent performance on bitts or capstans. The low stretch affords superior working control and minimum excursion. Round Plait ${ }^{\text {T" }}$ constructions are easily spliced by a standard tuck splice procedure.

## CHARACTERISTICS

- Non-Rotating, easy to splice
- High strength with low stretch
- Superior working wear life - wet and dry


## APPLICATIONS

- Tug Assist Lines
- Mooring and Pendant Lines
- Barge Tie-Up Lines


## ROUND PLAIT POLYESTER

| SIZE |  |  |  | WEIGHT |  | AVERAGE STRENGTH |  | MINIMUM STRENGTH |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dia. Inch | Dia. mm | Circ. Inch | Circ. mm | Lbs per 100 Ft . | $\begin{aligned} & \mathrm{Kg} \text { per } \\ & 100 \mathrm{M} \end{aligned}$ | Lbs | Kg | Lbs | Kg |
| 3/4" | 18 | 2-1/4" | 54 | 18.8 | 28.0 | 17,400 | 7,893 | 15,700 | 7,122 |
| 7/8" | 22 | 2-3/4" | 66 | 28.1 | 41.8 | 26,200 | 11,884 | 23,600 | 10,705 |
| $1 "$ | 24 | 3" | 72 | 35.1 | 52.2 | 30,500 | 13,835 | 27,500 | 12,474 |
| 1-1/8" | 28 | 3-1/2" | 84 | 41.1 | 61.2 | 39,200 | 17,781 | 35,300 | 16,012 |
| 1-1/4" | 30 | $3-3 / 4{ }^{\prime \prime}$ | 90 | 45.8 | 68.2 | 45,800 | 20,775 | 41,200 | 18,688 |
| 1-5/16" | 32 | 4" | 96 | 54.9 | 81.7 | 52,300 | 23,723 | 47,100 | 21,365 |
| $1-1 / 2^{\prime \prime}$ | 36 | 4-1/2" | 108 | 71.0 | 105.7 | 65,400 | 29,665 | 58,900 | 26,717 |
| 1-5/8' | 40 | $5{ }^{\prime \prime}$ | 120 | 84.8 | 126.2 | 78,500 | 35,608 | 70,700 | 32,070 |
| 1-3/4" | 44 | 5-1/2" | 132 | 98.7 | 146.9 | 91,600 | 41,550 | 82,400 | 37,377 |
| 2" | 48 | $6{ }^{\prime \prime}$ | 144 | 120.0 | 178.6 | 111,000 | 50,350 | 99,900 | 45,315 |
| 2-1/8" | 52 | 6-1/2" | 156 | 141.0 | 209.8 | 131,000 | 59,422 | 117,900 | 53,479 |
| 2-1/4" | 56 | $7{ }^{7}$ | 168 | 160.0 | 238.1 | 151,000 | 68,494 | 135,900 | 61,644 |
| 2-1/2" | 60 | 7-1/2" | 180 | 188.0 | 279.8 | 177,000 | 80,287 | 159,300 | 72,258 |
| 2-5/8" | 64 | $8{ }^{1}$ | 192 | 207.0 | 308.1 | 196,000 | 88,906 | 176,400 | 80,015 |
| 2-3/4" | 68 | 8-1/2" | 204 | 234.0 | 348.2 | 222,000 | 100,699 | 199,800 | 90,629 |
| 3" | 72 | 9" | 216 | 272.0 | 404.8 | 255,000 | 115,668 | 229,500 | 104,101 |
| 3-1/4" | 80 | $10^{\prime \prime}$ | 240 | 337.0 | 501.5 | 309,000 | 140,162 | 278,100 | 126,146 |
| 3-5/8" | 88 | $11 "$ | 264 | 402.0 | 598.3 | 375,000 | 170,100 | 337,500 | 153,090 |
| $4{ }^{\prime \prime}$ | 96 | 12 " | 288 | 486.0 | 723.3 | 450,000 | 204,120 | 405,000 | 183,708 |


| iber Content: ....... Polyester Fiber |  |  |
| :---: | :---: | :---: |
| Specific Gravily. .......... 1.3 |  |  |
| Elastic Elongation at Percentage of Break Strength |  |  |
| $10 \%$ 1.7 | $\begin{gathered} 20 \% \\ 2.7 \end{gathered}$ |  |

Water Absorption Fiber:

A fast splicing single braid constructed with high strength Ultra Blue ${ }^{\text {TM }}$ copolymer olefin fiber. The firm grip body and strength of rope is generated from use of the Ultra Blue ${ }^{\text {tm }}$ fiber. Quik-Splice ${ }^{\circledR}$ Polytron ${ }^{\text {TM }}$ floats and has very high wet and dry wear abrasion. The Ultra Blue ${ }^{\text {TM }}$ fiber has excellent dielectric properties and is extruded with our SL-5 $5^{\text {TM }}$ ultraviolet inhibitor to develop superior resistance to sunlight degradation.
Sizes 1/4"-7/16" diameter are 8-strand single braid construction.

## CHARACTERISTICS

- Fast and easy splicing
- Non-rotational rope
- Firm flexibility with high grip
- Floating high strength rope


## APPLICATIONS

- Hand and Block Lines
- Pilot and Pulling Lines
- Buoy Mooring Lines
- Fabricated Slings


## QUIK SPLICE POLYTRON

| SIZE |  |  |  | WEIGHT |  | AVERAGE STRENGTH |  | MINIMUM STRENGTH |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dia. Inch | Dia. mm | Circ. Inch | Circ. <br> mm | Lbs per 100 Ft . | $\begin{aligned} & \mathrm{Kg} \text { per } \\ & 100 \mathrm{M} \end{aligned}$ | Lbs | Kg | Lbs | Kg |
| 1/4" | 6 | 3/4" | 18 | 1.1 | 1.6 | 1,600 | 726 | 1,440 | 268 |
| 5/16" | 8 | $1 "$ | 24 | 1.7 | 2.5 | 2,500 | 1,134 | 2,250 | 432 |
| 3/8" | 9 | 1-1/8" | 27 | 2.7 | 4.0 | 3,600 | 1,633 | 3,240 | 638 |
| 7/16" | 11 | 1-1/4" | 33 | 3.5 | 5.2 | 4,600 | 2,087 | 4,140 | 823 |
| 1/2" | 12 | 1-1/2" | 36 | 4.7 | 7.0 | 6,650 | 3,016 | 5,985 | 1,111 |
| 5/8" | 16 | 2" | 48 | 7.8 | 11.6 | 10,900 | 4,944 | 9,810 | 1,811 |

Fiber Content: ...... Ultra Blue ${ }^{\text {Tm }}$ Fiber
Specific Gravity: ... . 94 (Floats)
Elastic Elongation at Percentage of Break Strength:

10\% 20\% 30\%
1.1
1.9

Water Absorption
Fiber: $\qquad$ None


12-Strand Polyester Fibers Plied Over Olefin Fibers

Dura-Plex ${ }^{\text {TM }}$ is made using polyester fibers plied over olefin fibers in each of the twelve strands. The composite strands are braided together using the Parallay ${ }^{\text {TM }}$ construction to produce a rope with an excellent strength-toweight ratio.

Twelve - Strand Product Code: 290 (Uncoated); 852 (Samthane ${ }^{\text {TM }}$ Coated) $\nabla$

## CHARACTERISTICS

- Easiest splicing of all ropes
- Non-kinking,won't hockle
- Flexible
- High strength-to-weight ratio
- Samthane ${ }^{\text {tm }}$ coatings available to enhance abrasion resistance and identification


## APPLICATIONS

- Locking Lines
- Distribution Pulling Lines
- Tie-Down Lines
- Hand Lines \& Block Lines

DURA-PLEX

| SIZE |  |  |  | WEIGHT |  | AVERAGE STRENGTH |  | MINIMUM STRENGTH |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dia. Inch | Dia. mm | Circ. Inch | Circ. mm | Lbs per 100 Ft . | Kg per 100 M | Lbs | Kg | Lbs | Kg |
| 1/4" | 6 | 3/4" | 18 | 1.73 | 2.57 | 1,940 | 880 | 1,700 | 771 |
| 5/16" | 8 | $1{ }^{\prime \prime}$ | 24 | 2.49 | 3.71 | 2,600 | 1,179 | 2,300 | 1,043 |
| 3/8" | 9 | $1-1 / 8^{\prime \prime}$ | 27 | 3.40 | 5.06 | 3,880 | 1,760 | 3,500 | 1,588 |
| 7/16" | 11 | 1-1/4" | 33 | 4.62 | 6.88 | 5,200 | 2,359 | 4,700 | 2,132 |
| 1/2" | 12 | $1-1 / 2^{\prime \prime}$ | 36 | 6.00 | 8.93 | 6,700 | 3,039 | 6,000 | 2,722 |
| 5/8" | 16 | 2" | 48 | 11.03 | 16.41 | 11,600 | 5,262 | 10,400 | 4,717 |
| 3/4" | 18 | 2-1/4" | 54 | 14.99 | 22.31 | 14,500 | 6,577 | 13,100 | 5,942 |
| 7/8" | 22 | 2-3/4" | 66 | 21.50 | 32.00 | 21,200 | 9,616 | 19,100 | 8,664 |
| 1" | 24 | 3" | 72 | 24.19 | 36.00 | 25,000 | 11,340 | 22,500 | 10,206 |


| Fiber Content: ......................... Polyester and Olefin Fiber |  |  |
| :---: | :---: | :---: |
| Specific Gravity:.................................................. 1.20 |  |  |
| Elastic Elongation at Percentage of Break Strength: |  |  |
| $\begin{gathered} 10 \% \\ 1.6 \end{gathered}$ | $\begin{aligned} & 20 \% \\ & 2.7 \end{aligned}$ | $\begin{gathered} 30 \% \\ 3.8 \end{gathered}$ |
| Water Absorption Fiber: ................................. 1\% to 2\% |  |  |

A twelve-strand single braid nylon construction that is fully heat stabilized and coated with Samthane"' ${ }^{\text {t" }}$ urethane. PTS-12 $2^{\text {m }}$ Nylon maintains less than $1 \%$ wet shrinkage with excellent shock mitigation. The twelve-strand construction is easily spliced and is a non-rotational construction. Its wear life is greatly enhanced from the Samthane ${ }^{\text {m" }}$ coating that creates a firm, non-snagging construction. The high strength and superior wear make PTS-12"'" an excellent product to replace all other nylon ropes.

| PIS-12 NYLON |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SIZE |  |  |  | WEIGHT |  | AVERAGE STRENGTH |  |
| Dia. <br> Inch | Dia. <br> mm | Circ. Inch | Circ. <br> mm | Lbs per 100 Ft . | Kg per 100 M | Lbs | Kg |
| 3/16" | 5 | 9/16" | 14 | 1.2 | 1.8 | 1,750 | 794 |
| 1/4" | 6 | 3/4" | 18 | 2.0 | 3.0 | 3,000 | 1,361 |
| 5/16" | 8 | $1 "$ | 24 | 3.0 | 4.5 | 4,500 | 2,041 |
| 3/8" | 9 | 1-1/8" | 27 | 4.0 | 6.0 | 5,900 | 2,676 |
| 7/16" | 11 | 1-1/4" | 33 | 6.0 | 8.9 | 8,750 | 3,969 |
| 1/2" | 12 | 1-1/2" | 36 | 8.0 | 11.9 | 11,250 | 5,103 |
| 9/16" | 14 | 1-3/4" | 42 | 10.4 | 15.5 | 14,000 | 6,350 |
| 5/8" | 16 | 21 | 48 | 12.1 | 18.0 | 16,000 | 7,258 |
| 3/4" | 18 | 2-1/4" | 54 | 16.1 | 24.0 | 21,000 | 9,526 |

## CHARACTERISTICS

- Excellent shock mitigation
- Superior strength
- Maintains high service life flexibility
- $30 \%$ total stretch at break
- Non-torquing
- Fast, easy splicing


## APPLICATIONS

- Anchor Lines
- Deep Water Mooring Lines
- Specialty Slings
- Tow Lines

Fiber Content: ..... Nylon Fiber
Specific Gravity: . $\qquad$ 1.14

Elastic Elongation
at Percentage of Break Strength:

| $10 \%$ | $20 \%$ | $30 \%$ |
| :---: | :---: | :---: |
| 4.7 | 6.9 | 7.7 |

## 5

12-Strand
Polyester Fiber

Tenex is a twelve-strand Samthane ${ }^{\text {TM }}$ coated, high tenacity polyester rope offering high strength coupled with low stretch and outstanding abrasion resistance. Its abrasion resistance and firmness is due to special Samthane ${ }^{\text {Tw }}$ Type " S " coating which allows for easy splicing while enhancing wear life and
snag resistance. Available in long, continuous lengths and a variety of brilliant colors for easy identification.
Tenex single braid is a viable alternative to using 2 -in- $1^{\circledR}$ braids when easy field splicing and economy are major considerations.

## CHARACTERISTICS

- Very easily spliced
- Non-torquing, non-rotational
- Excellent abrasion and snag resistance
- Selection of five brilliant colors
- Low stretch


## APPLICATIONS

- Transmission and Distribution Lines
- Pulling Lines
- Slings
- Fiber Optic Pulling Line


## TENEX

| SIZE |  |  |  | WEIGHT |  | AVERAGE STRENGTH |  | MINIMUM STRENGTH |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dia. Inch | Dia. <br> mm | Circ. Inch | Circ. <br> mm | $\begin{aligned} & \text { Lbs per } \\ & 100 \mathrm{Ft} . \end{aligned}$ | $\begin{aligned} & \mathrm{Kg} \text { per } \\ & 100 \mathrm{M} \end{aligned}$ | Lbs | Kg | Lbs | Kg |
| 1/4" | 6 | 3/4" | 18 | 2.1 | 3.1 | 3,240 | 1,470 | 2,900 | 1,315 |
| 5/16" | 8 | $1 "$ | 24 | 3.2 | 4.8 | 4,720 | 2,141 | 4,200 | 1,905 |
| $3 / 8$ " | 9 | 1-1/8" | 27 | 4.2 | 6.3 | 6,170 | 2,799 | 5,500 | 2,495 |
| 7/16" | 11 | 1-1/4" | 33 | 6.3 | 9.4 | 9,000 | 4,082 | 8,100 | 3,674 |
| 1/2" | 12 | 1-1/2" | 36 | 8.5 | 12.6 | 11,800 | 5,352 | 10,600 | 4,808 |
| 9/16" | 14 | 1-3/4" | 42 | 10.0 | 14.9 | 15,000 | 6,804 | 13,500 | 6,124 |
| 5/8" | 16 | $2{ }^{\prime \prime}$ | 48 | 13.1 | 19.5 | 17,100 | 7,757 | 15,300 | 6,940 |
| 3/4" | 18 | 2-1/4" | 54 | 17.2 | 25.6 | 22,400 | 10,161 | 20,100 | 9,117 |
| 7/8" | 22 | 2-3/4" | 66 | 25.8 | 38.4 | 32,600 | 14,787 | 29,300 | 13,290 |
| $1{ }^{\prime \prime}$ | 24 | 3" | 72 | 34.5 | 51.3 | 42,700 | 19,369 | 38,400 | 17,418 |


| Fiber Content: .............................................. 1.38 |
| :--- |
| Specific Gravity: .................. |


| Elastic Elongation at Percentage of Break Strength: |  |  |
| :---: | :---: | :---: |
| $10 \%$ | $20 \%$ | $30 \%$ |
| 1.4 | 2.3 | 3.0 |
| Water Absorption Fiber: .................... $1 \%$ to $2 \%$ |  |  |



12-Strand UHMWPE Fiber

Synthetic fiber and rope design and processing technology have continuously made major strides in development to create synthetic rope products that constantly surpass previously established plateaus of performance. The development of ultra high molecular weight polyethylene (UHMWPE) fiber and our tension-set processing procedure has created an added plus to the continuing replacement of wire rope and its associated disadvantages. Based on our processing improvements and the final rope's performance characteristics we are re-naming Spectron 12
Plus ${ }^{\text {tw }}$ to AmSteel ${ }^{\circledR}$-Blue which is more reflective of The American Group and the rope's performance.
AmStee ${ }^{\circledR}$-Blue is the latest development of UHMWPE fiber in a twelve-strand braided rope utilizing tension-set Parallay ${ }^{\text {TM }}$ design with our proprietary blue Samthane $e^{\text {TM }}$ urethane coating. This twelve-strand braided rope yields the maximum in strength to weight ratio and is stronger than wire rope constructions - yet it floats. The other major advantage AmSteel ${ }^{\circledR}$-Blue offers is it also has the best flexfatigue and wear resistance compared to products made of HMWPE or post-drawn HMWPE fibers. The product's light weight, flexibility, and fast, easy splicing make it truly a unique product.

## CHARACTERISTICS

- Maximum strength to weight ratio
- Lowest stretch twelve-strand
- Highest wear and flexfatigue life
- Non-rotational
- Floats
- Fast and easy to splice
- $40 \%$ to $45 \%$ stronger than AmSteel ${ }^{\circledR}$


## APPLICATIONS

- Mooring Lines
- Tug Assist Lines
- Face and Wing Wires
- Seismic Tow Lines
- Winch Lines
- Pulling Lines
- Specialty Rigging Lines
- Wire Rope Replacement

| AMSTEEL - BLUE |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SIZE |  |  |  | WEIGHT |  | AVERAGE STRENGTH |  | MINIMUM STRENGTH |  |
| $\begin{aligned} & \text { Dia. } \\ & \text { Inch } \end{aligned}$ | Dia. mm | Circ. Inch | Circ. mm | $\begin{aligned} & \text { Lbs per } \\ & \text { 100 Ft. } \end{aligned}$ | Kg per 100 M | Lbs | Kg | Lbs | Kg |
| 1/4" | 6 | 3/4" | 18 | 1.60 | 2.38 | 9,200 | 4,173 | 8,280 | 3,756 |
| 5/16" | 8 | $1{ }^{1 /}$ | 24 | 2.65 | 3.94 | 13,700 | 6,214 | 12,330 | 5,593 |
| 3/8" | 9 | $1-1 / 8^{\prime \prime}$ | 27 | 3.71 | 5.52 | 20,445 | 9,274 | 18,401 | 8,347 |
| 7/16" | 11 | 1-1/4" | 33 | 4.23 | 6.30 | 23,925 | 10,852 | 21,533 | 9,767 |
| $1 / 2^{\prime \prime}$ | 12 | $1-1 / 2^{\prime \prime}$ | 36 | 6.35 | 9.45 | 36,250 | 16,443 | 32,625 | 14,799 |
| 9/16" | 14 | 1-3/4" | 42 | 7.90 | 11.76 | 44,660 | 20,258 | 40,194 | 18,232 |
| 5/8" | 16 | $2^{\prime \prime}$ | 48 | 10.61 | 15.79 | 59,015 | 26,769 | 53,114 | 24,093 |
| $3 / 4^{\prime \prime}$ | 18 | 2-1/4" | 54 | 13.31 | 19.81 | 69,600 | 31,571 | 62,640 | 28,414 |
| 13/16" | 20 | 2-1/2' | 60 | 15.84 | 23.57 | 81,925 | 37,161 | 73,733 | 33,445 |
| 7/8" | 22 | 2-3/4" | 66 | 19.61 | 29.18 | 98,310 | 44,593 | 88,479 | 40,134 |
| $1 "$ | 24 | 3" | 72 | 23.43 | 34.87 | 116,000 | 52,618 | 104,400 | 47,356 |
| 1-1/16" | 26 | $3-1 / 4{ }^{\prime \prime}$ | 78 | 27.53 | 40.97 | 131,300 | 59,558 | 118,170 | 53,602 |
| 1-1/8" | 28 | 3-1/2" | 84 | 31.86 | 47.41 | 147,900 | 67,087 | 133,110 | 60,379 |
| 1-1/4" | 30 | 3-3/4" | 90 | 36.23 | 53.92 | 165,300 | 74,980 | 148,770 | 67,482 |
| 1-5/16" | 32 | 4" | 96 | 41.71 | 62.07 | 184,150 | 83,530 | 165,735 | 75,177 |
| 1-1/2" | 36 | 4-1/2' | 108 | 51.70 | 76.94 | 227,650 | 103,262 | 204,885 | 92,936 |
| 1-5/8" | 40 | $5{ }^{\text {" }}$ | 120 | 65.72 | 97.80 | 283,185 | 128,453 | 254,867 | 115,608 |
| 1-3/4" | 44 | 5-1/2' | 132 | 78.35 | 116.60 | 334,950 | 151,933 | 301,455 | 136,740 |
| 2" | 48 | 6" | 144 | 91.40 | 136.02 | 380,625 | 172,652 | 342,563 | 155,387 |
| 2-1/8" | 52 | 6-1/2' | 156 | 109.00 | 162.21 | 456,750 | 207,182 | 411,075 | 186,464 |
| 2-1/4" | 56 | 7" | 168 | 122.00 | 181.56 | 537,443 | 243,784 | 483,698 | 219,406 |
| 2-1/2" | 60 | 7-1/2" | 180 | 148.00 | 22.25 | 588,000 | 266,717 | 529,200 | 240,045 |
| 2-5/8" | 64 | 8" | 192 | 167.00 | 248.53 | 661,500 | 300,056 | 595,350 | 270,051 |
| 2-3/4" | 68 | 8-1/2" | 204 | 187.00 | 278.29 | 735,000 | 333,396 | 661,500 | 300,056 |
| $3^{\prime \prime}$ | 72 | $9{ }^{10}$ | 216 | 206.00 | 306.57 | 830,550 | 376,737 | 747,495 | 339,064 |
| 3-1/4" | 80 | $10^{\prime \prime}$ | 240 | 261.00 | 388.42 | 1,006,950 | 456,753 | 906,255 | 411,077 |

Tech $12^{m m}$ is a twelve-strand single braid of Technora ${ }^{\circledR}$ fiber with Samthane ${ }^{\text {Tm }}$ urethane coating. The product has higher strength and lower stretch than products constructed of other types of high modulus aramid fibers. The Samthane ${ }^{\text {rm }}$ coating creates enhanced wear resistance but allows very fast splicing capability. Tech $12^{\text {t" }}$ has extremely good heat resistance and flex fatigue service life. Its extremely high strength and low stretch offer the opportunity of replacing wire rope in static applications.

| Fiber Content: ...................... Technora ${ }^{\text {® }}$ Fiber |  |  |
| :---: | :---: | :---: |
| Specific Gravity:.................................. 1.39 |  |  |
| Elastic Elongation at Percentage of Break Strength: |  |  |
| $\begin{aligned} & 10 \% \\ & 0.63 \end{aligned}$ | $\begin{aligned} & 20 \% \\ & 0.96 \end{aligned}$ | $\begin{gathered} 30 \% \\ 1.2 \end{gathered}$ |
| Water Absorption Fiber: ....................... None |  |  |

## CHARACTERISTICS

- Negligible creep/cold flow
- High strength and low stretch
- Excellent wear and flexibility
- High heat resistance
- Excellent dielectric properties


## APPLICATIONS

- Specialty Rigging Lines
- Fiber Optic Pulling Lines
- Deep Water Lift Lines
- High Strength Heat Resistant Slings

| SIZE |  |  |  | WEIGHT |  | AVERAGE STRENGTH |  | MINIMUM STRENGTH |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dia. Inch | Dia. mm | $\begin{aligned} & \begin{array}{l} \text { Circ. } \\ \text { Inch } \end{array} \end{aligned}$ | Circ. mm | Lbs per 100 Ft. | $\begin{aligned} & \mathrm{Kg} \text { per } \\ & 100 \mathrm{M} \end{aligned}$ | Lbs | Kg | Lbs | Kg |
| 1/8' | 3 | 3/8" | 9 | . 6 | . 9 | 2,800 | 1,270 | 2,520 | 1,143 |
| 3/16" | 5 | 9/16" | 15 | 1.3 | 1.9 | 5,600 | 2,540 | 5,040 | 2,286 |
| 1/4" | 6 | 3/4" | 18 | 1.9 | 2.8 | 8,150 | 3,697 | 7,335 | 3,327 |
| 5/16" | 8 | $1 "$ | 24 | 3.2 | 4.8 | 13,000 | 5,897 | 11,700 | 5,307 |
| 3/8" | 9 | $1-1 / 8^{\prime \prime}$ | 27 | 4.3 | 6.4 | 18,000 | 8,165 | 16,200 | 7,348 |
| 7/16" | 11 | $1-1 / 4{ }^{\prime \prime}$ | 33 | 6.7 | 10.0 | 28,000 | 12,701 | 25,200 | 11,431 |
| 1/2" | 12 | $1-1 / 2^{\prime \prime}$ | 36 | 8.3 | 12.4 | 33,000 | 14,969 | 29,700 | 13,472 |
| 5/8" | 16 | 2" | 48 | 13.5 | 20.1 | 50,000 | 22,680 | 45,000 | 20,412 |
| 3/4" | 18 | 2-1/4" | 54 | 19.3 | 28.7 | 65,000 | 29,484 | 58,500 | 26,536 |
| 7/8" | 22 | 2-3/4" | 66 | 25.3 | 37.7 | 84,000 | 38,102 | 75,600 | 34,292 |
| $1{ }^{\prime \prime}$ | 24 | 3" | 72 | 31.1 | 46.3 | 102,000 | 46,267 | 91,800 | 41,640 |

Double Braid Polyester Outside with HMWPE Inside

A double braided rope that derives its high strength from a braided high molecular weight polyethylene (HMWPE) fiber core. The braided polyester cover creates a firm rope and serves as abrasion protection to the strength core. This rope has extremely low elongation and is a lightweight replacement for wire rope. For added wear life and color identification, Spectron II is available with our Samthane ${ }^{T m}$ coating. Whether coated or uncoated, Spectron II is fully sliceable.

## CHARACTERISTICS

- Excellent dielectric properties
- High strength to weight ratio
- Superior flex fatigue life
- Non-rotational, low stretch rope


## SPECTRON II

| SIZE |  |  |  | WEIGHT |  | AVERAGE STRENGTH |  | MINIMUM STRENGTH |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dia. Inch | Dia. <br> mm | Circ. Inch | Circ. <br> mm | Lbs per $100 \mathrm{Ft} .$ | $\begin{aligned} & \mathrm{Kg} \text { per } \\ & 100 \mathrm{M} \end{aligned}$ | Lbs | Kg | Lbs | Kg |
| 1/4" | 6 | 3/4" | 18 | 2.2 | 3.3 | 4,500 | 2,041 | 3,800 | 1,724 |
| 5/16" | 8 | $1 "$ | 24 | 3.5 | 5.2 | 7,500 | 3,402 | 6,400 | 2,903 |
| 3/8" | 9 | 1-1/8" | 27 | 4.1 | 6.1 | 9,800 | 4,445 | 8,300 | 3,765 |
| 7/16" | 11 | 1-1/4" | 33 | 6.1 | 9.1 | 11,700 | 5,307 | 9,900 | 4,491 |
| 1/2" | 12 | 1-1/2" | 36 | 8.3 | 12.4 | 15,500 | 7,031 | 13,200 | 5,988 |
| 9/16" | 14 | 1-3/4" | 42 | 10.0 | 14.9 | 22,000 | 9,979 | 18,700 | 8,482 |
| 5/8" | 16 | 2" | 48 | 12.6 | 18.8 | 27,000 | 12,247 | 23,000 | 10,433 |
| 3/4" | 18 | 2-1/4" | 54 | 16.0 | 23.8 | 35,000 | 15,876 | 29,800 | 13,517 |
| 13/16" | 20 | 2-1/2" | 60 | 20.3 | 30.2 | 40,000 | 18,144 | 34,000 | 15,422 |
| 7/8" | 22 | 2-3/4" | 66 | 24.8 | 36.9 | 50,000 | 22,680 | 42,500 | 19,278 |
| $1{ }^{\prime \prime}$ | 24 | 3" | 72 | 30.6 | 45.5 | 57,000 | 25,855 | 48,500 | 22,000 |
| 1-1/16" | 26 | $3-1 / 4 "$ | 78 | 31.7 | 47.2 | 59,300 | 26,898 | 50,400 | 22,861 |
| 1-1/8" | 28 | $3-1 / 2 "$ | 84 | 37.0 | 55.1 | 72,900 | 33,067 | 62,000 | 28,123 |
| 1-1/4" | 30 | 3-3/4" | 90 | 42.6 | 63.4 | 81,000 | 36,742 | 68,900 | 31,253 |

## APPLICATIONS

- Utility Winch Lines
- T \& D Pulling Lines
- Deep Water Lift Lines
- Fiber Optic Lines
- Alternative to Wire Rope

Fiber Content: ....... Polyester and HMWPE Fiber
Specific Gravity: $\qquad$ 1.20

Elastic Elongation at Percentage of Break Strength:

| $10 \%$ | $20 \%$ | $30 \%$ |
| :--- | :--- | :--- |
| 0.5 | 0.67 | 0.96 |

Water Absorption
Fiber: $\qquad$

## ULTRA-TECH

## Double Braid

 Product Code: 672Ultra-Tech ${ }^{\text {TM }}$ is a double braid rope construction that has its strength and stretch features developed from the braided Technora ${ }^{\circledR}$ core. The braided polyester cover creates a firm flexible working rope and protects the core from external wear. The core dependent spliced rope develops a very high strength,
low stretch, long wearing nonrotational rope. Technora ${ }^{\circledR}$ fiber has excellent flex-fatigue life compared to other high modulus aramid fibers while having higher strength and the same high heat resistance.


## CHARACTERISTICS

- High strength and low stretch
- Flexible non-rotational rope
- Excellent dielectric properties
- Negligible creep/cold flow


## APPLICATIONS

- T \& D Pulling Lines
- Lift Lines


## Ultra Tech

| SIZE |  |  |  | WEIGHT |  | AVERAGE STRENGTH |  | MINIMUM STRENGTH |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dia. Inch | Dia. <br> mm | Circ. Inch | Circ. <br> mm | $\begin{aligned} & \text { Lbs per } \\ & 100 \mathrm{Ft} . \end{aligned}$ | $\begin{aligned} & \mathrm{Kg} \text { per } \\ & 100 \mathrm{M} \end{aligned}$ | Lbs | Kg | Lbs | Kg |
| 3/16" | 5 | 9/16" | 15 | 1.4 | 2.1 | 2,300 | 1,043 | 1,955 | 887 |
| 1/4" | 6 | 3/4" | 18 | 2.5 | 3.7 | 4,800 | 2,177 | 4,080 | 1,851 |
| 5/16" | 8 | $1 "$ | 24 | 3.8 | 5.7 | 7,800 | 3,538 | 6,630 | 3,007 |
| 3/8" | 9 | 1-1/8" | 27 | 4.8 | 7.1 | 10,500 | 4,763 | 8,925 | 4,048 |
| 7/16" | 11 | 1-1/4" | 33 | 6.7 | 10.0 | 14,800 | 6,713 | 12,580 | 5,706 |
| 1/2" | 12 | 1-1/2" | 36 | 9.5 | 14.1 | 22,000 | 9,979 | 18,700 | 8,482 |
| 5/8" | 16 | $2{ }^{\prime \prime}$ | 48 | 14.4 | 21.4 | 42,000 | 19,051 | 35,700 | 16,194 |

- Specialty Rigging Lines

| Fiber Content: ................................ Polyester |  |  |
| :---: | :---: | :---: |
| Specific Gravity:................................ 1.38 |  |  |
| Elastic Elongation at Percentage of Break Strength |  |  |
| $\begin{aligned} & 10 \% \\ & 0.63 \end{aligned}$ | $\begin{aligned} & 20 \% \\ & 0.97 \end{aligned}$ |  |

Water Absorption Fiber: $\qquad$

A double braid of high tenacity nylon fiber treated with Pro-Gard ${ }^{\text {TM }}$ marine finish. This firm but flexible product maximizes wet wear life and strength due to the Pro-Gard ${ }^{\text {Tm }}$ marine finish. It does not shrink harden during service and maintains full performance flexibility for handling. The proven durability of 2 -in- $1^{\circledR}$ Super Strong ${ }^{\text {Tm }}$ confirms it is the best wet wearing double braid nylon available.
2-in- $1^{\circledR}$ Super Strong ${ }^{\text {TM }}$ conforms to U.S. Mil. Spec. MIL-R-24050C, Canadian Spec. 40-GP-16M Type 1/MOT, and NATO Class 4020 Supp. 1972.

Fiber Content: $\qquad$ Nylon Fiber
Specific Gravity: $\qquad$ 1.14

Elastic Elongation at Percentage of Break Strength:

| $10 \%$ | $20 \%$ | $30 \%$ |
| :---: | :---: | :---: |
| 3.0 | 5.3 | 6.7 |

Water Absorption Fiber: $\qquad$ to 5\%

## CHARACTERISTICS

- Maximum wet strength
- Excellent stretch range for shock mitigation
- Torque-free, will not kink or hockle
- Easily spliced
- Maintains full flexibility over service life


## APPLICATIONS

- Mooring and Anchoring Lines
- Mooring Pendants
- Tow Lines

| 2-IN-1 SUPER STRONG |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SIZE |  |  |  | WEIGHT |  | AVERAGE STRENGTH |  | MINIMUM STRENGTH |  |
| Dia. Inch | Dia. <br> mm | Circ. Inch | Circ. mm | $\begin{aligned} & \text { Lbs per } \\ & 100 \mathrm{Ft} \end{aligned}$ | Kg per <br> 100 M | Lbs | Kg | Lbs | Kg |
| 1/4" | 6 | 3/4" | 18 | 1.70 | 2.53 | 2,300 | 1,043 | 1,840 | 835 |
| 5/16" | 8 | $1{ }^{1 /}$ | 24 | 2.60 | 3.87 | 3,400 | 1,542 | 2,880 | 1,306 |
| 3/8" | 9 | 1-1/8" | 27 | 3.70 | 5.51 | 4,900 | 2,223 | 4,140 | 1,878 |
| 7/16" | 11 | 1-1/4" | 33 | 5.10 | 7.59 | 6,600 | 2,994 | 5,640 | 2,558 |
| 1/2" | 12 | 1-1/2" | 36 | 6.60 | 9.82 | 8,500 | 3,856 | 7,370 | 3,343 |
| 5/8" | 16 | 2" | 48 | 12.00 | 17.86 | 15,200 | 6,895 | 13,100 | 5,942 |
| 3/4" | 18 | 2-1/4" | 54 | 15.00 | 22.32 | 19,100 | 8,664 | 16,600 | 7,530 |
| 7/8" | 22 | 2-3/4" | 66 | 22.00 | 32.74 | 28,300 | 12,837 | 24,700 | 11,204 |
| $1{ }^{\prime \prime}$ | 24 | 3" | 72 | 26.00 | 38.69 | 33,600 | 15,241 | 29,500 | 13,381 |
| 1-1/8" | 28 | 3-1/2" | 84 | 36.00 | 53.58 | 45,000 | 20,412 | 40,100 | 18,189 |
| 1-1/4" | 30 | 3-3/4" | 90 | 41.00 | 61.02 | 52,00 | 23,587 | 46,100 | 20,911 |
| 1-5/16" | 32 | 4" | 96 | 47.00 | 69.95 | 59,000 | 26,762 | 52,400 | 23,769 |
| 1-1/2" | 36 | 4-1/2" | 108 | 60.00 | 89.29 | 74,000 | 33,566 | 66,300 | 30,074 |
| 1-5/8" | 40 | $5{ }^{\prime \prime}$ | 120 | 74.00 | 110.13 | 91,000 | 41,278 | 81,800 | 37,104 |
| 2" | 48 | $6^{\prime \prime}$ | 144 | 106.00 | 157.75 | 131,000 | 59,422 | 115,000 | 52,164 |
| 2-1/4" | 56 | $7{ }^{\prime \prime}$ | 168 | 144.00 | 214.30 | 177,000 | 80,287 | 152,000 | 68,947 |
| 2-5/8" | 64 | 8" | 192 | 188.00 | 279.78 | 230,000 | 104,328 | 195,000 | 88,452 |
| $3^{\prime \prime}$ | 72 | 9" | 216 | 238.00 | 354.19 | 285,000 | 129,276 | 243,000 | 110,225 |
| 3-1/4" | 80 | $10 "$ | 240 | 294.00 | 437.53 | 322,000 | 146,059 | 295,000 | 133,812 |
| 3-5/8" | 88 | 111 | 264 | 356.00 | 529.80 | 384,000 | 174,182 | 351,000 | 159,214 |
| 4" | 96 | 12" | 288 | 423.00 | 629.51 | 451,000 | 204,574 | 414,000 | 187,790 |
| 4-1/4" | 104 | 13" | 312 | 497.00 | 739.64 | 523,000 | 237,233 | 479,000 | 217,274 |
| 4-5/8" | 112 | 14" | 336 | 576.00 | 857.20 | 599,000 | 271,706 | 549,000 | 249,026 |
| $5^{\prime \prime}$ | 120 | $15 "$ | 360 | 662.00 | 985.19 | 680,000 | 308,448 | 623,000 | 282,593 |

Stable Braid ${ }^{\text {tm }}$ provides a firm polyester rope that yields high strength, low stretch, and excellent wear. The Duron ${ }^{\text {tw }}$ fiber technology which incorporates our Parallay ${ }^{\text {Tm }}$ plying, a braiding process which orients all the fibers parallel to the axis of the rope, is the reason that Stable Braid ${ }^{\text {m }}$ maximizes performance.

To enhance service life for marine applications Pro-Gard ${ }^{[m}$ marine finish is applied to further enhance wet wear characteristics.
2-in- ${ }^{\oplus}$ Stable Braid ${ }^{T m}$ conforms to U.S. Mil. Spec. MIL-R-24677 dated 6 November 1986, Canadian Spec. 40-GP-16M Type 3/MOT, and NATO Class 4020 Supp. 1972

## 2-IN-1 STABLE BRAID

| SIZE |  |  |  | WEIGHT |  | AVERAGE STRENGTH |  | MINIMUM STRENGTH |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dia. Inch | Dia. mm | Circ. Inch | Circ. mm | $\begin{aligned} & \text { Lbs per } \\ & 100 \mathrm{Ft} . \end{aligned}$ | $\begin{aligned} & \mathrm{Kg} \text { per } \\ & 100 \mathrm{M} \end{aligned}$ | Lbs | Kg | Lbs | Kg |
| 1/4" | 6 | 3/4" | 18 | 2.5 | 3.7 | 2,800 | 1,270 | 2,400 | 1,089 |
| 5/16" | 8 | $1 "$ | 24 | 3.6 | 5.4 | 4,200 | 1,905 | 3,600 | 1,633 |
| 3/8" | 9 | 1-1/8" | 27 | 5.0 | 7.4 | 5,600 | 2,540 | 4,800 | 2,177 |
| 7/16" | 11 | 1-1/4" | 33 | 6.3 | 9.4 | 7,700 | 3,493 | 6,500 | 2,948 |
| 1/2" | 12 | 1-1/2" | 36 | 8.9 | 13.2 | 10,400 | 4,717 | 8,800 | 3,992 |
| 9/16" | 14 | 1-3/4" | 42 | 11.6 | 17.3 | 13,300 | 6,033 | 11,300 | 5,126 |
| 5/8" | 16 | $2{ }^{\prime \prime}$ | 48 | 14.2 | 21.1 | 16,300 | 7,394 | 13,900 | 6,305 |
| 3/4" | 18 | 2-1/4" | 54 | 18.1 | 26.9 | 20,400 | 9,253 | 17,300 | 7,847 |
| 7/8" | 22 | 2-3/4" | 66 | 27.1 | 40.3 | 29,900 | 13,563 | 25,400 | 11,521 |
| $1 "$ | 24 | 3" | 72 | 36.6 | 54.5 | 39,200 | 17,781 | 33,300 | 15,105 |
| 1-1/8" | 28 | $3-1 / 2^{\prime \prime}$ | 84 | 45.3 | 67.4 | 48,200 | 21,864 | 41,000 | 18,598 |
| 1-1/4" | 30 | 3-3/4" | 90 | 53.9 | 80.2 | 57,300 | 25,991 | 48,700 | 22,090 |
| 1-5/16" | 32 | 4" | 96 | 60.8 | 90.5 | 64,700 | 29,348 | 55,000 | 24,948 |
| 1-1/2" | 36 | 4-1/2" | 108 | 73.3 | 109.1 | 75,100 | 34,065 | 63,800 | 28,940 |
| 1-5/8" | 40 | $5{ }^{\prime \prime}$ | 120 | 85.9 | 127.8 | 87,200 | 39,554 | 74,100 | 33,612 |
| 2" | 48 | $6{ }^{\prime \prime}$ | 144 | 124.0 | 184.5 | 124,000 | 56,246 | 105,400 | 47,809 |
| 2-1/4" | 56 | 7" | 168 | 173.0 | 257.5 | 166,000 | 75,298 | 141,100 | 64,003 |
| 2-5/8" | 64 | 8" | 192 | 225.0 | 334.8 | 212,000 | 96,163 | 180,200 | 81,739 |
| 3" | 72 | 97 | 216 | 300.0 | 446.5 | 278,000 | 126,101 | 236,300 | 107,186 |
| 3-1/4" | 80 | 10" | 240 | 375.0 | 558.1 | 343,000 | 155,585 | 291,600 | 132,270 |
| 3-5/8" | 88 | 117 | 264 | 450.0 | 669.7 | 407,000 | 184,615 | 346,000 | 156,946 |
| 4" | 96 | 12" | 288 | 525.0 | 781.3 | 470,000 | 213,192 | 399,500 | 181,213 |
| 4-1/4" | 104 | 13" | 312 | 589.0 | 876.5 | 533,000 | 241,769 | 453,100 | 205,526 |
| 4-5/8" | 112 | 14" | 336 | 689.0 | 1025.4 | 616,000 | 279,418 | 523,600 | 237,505 |
| $5{ }^{\prime \prime}$ | 120 | 15" | 360 | 788.0 | 788.0 | 698,000 | 316,613 | 593,300 | 269,121 |

## CHARACTERISTICS

- Firm, torque-free construction
- Low stretch and high strength
- Excellent dielectric properties
- Superior wear resistance - wet or dry


## APPLICATIONS

- Mooring Lines and Pendants
- Deep Water Mooring
$\qquad$ Fiber
Specific Grayidy: Elastic Elongation at Percentage of Break Strength:

| $10 \%$ | $20 \%$ | $30 \%$ |
| :---: | :---: | :---: |
| 1.1 | 1.7 | 2.7 |

Water Absorption Fiber: $\qquad$ $1 \%$ to 2\%

MOORINE MASTER ROPES

Designed to meet the rigors of the marine industry with maximum strength, service life durability and deck handling flexibility with firmness for winch drums. The rope construction consists of seven braided core strength members contained within a thick durable braided chafe protection cover. The braids contained in a braid create cross-sectional firmness but allow good bending flexibility. The Mooring Master ${ }^{\text {rw }}$ construction lets the strength cores do their work without being exposed to external wear surfaces. All Mooring Master ${ }^{\text {Tw }}$ ropes are hand spliceable.

## MOORING MASTER"' D-7

| Fiber Content: $\qquad$ UHMWPE and Nylon Fiber |  |  |
| :---: | :---: | :---: |
| Specific Gravity: ........... 1.02 |  |  |
| Elastic Elongation at Percentage of Break Strength |  |  |
| 10\% | 20\% | 30\% |
| 0.47 | 0.78 | 1.0 |
| Water Absorption Fiber: |  |  |

## CHARACTERISTICS

- Low stretch at maximum strength
- Flexibility with firm cross section
- Fully protected strength members
- Lightweight
- Non-rotational


## APPLICATIONS

- Ship Mooring Lines
- Deep Water Mooring Lines
- Tug Assist Lines
- Face and Wing Wires

MAORIALSMASTER"' P-7
Fiber Content: $\qquad$ Polyester Fiber
Specific Gravity: $\qquad$ 1.38

Elastic Elongation at Percentage of Break Strength:

| $10 \%$ | $20 \%$ | $30 \%$ |
| :--- | :--- | :--- |
| 0.96 | 1.84 | 2.82 |

Water Absorption Fiber: $3 \%$ to $5 \%$


Nylon Outside UHMWPE Inside

## MOORING MASTER"' D. 7

The braided core strength members are produced from ultra high molecular weight polyethylene (UHMWPE) fibers that are covered by a braided nylon chafe protection cover. This product floats and has strengths higher than wire rope while being flexible and hand spliceable. It is the lowest stretch, highest strength rope available that floats.

## MOORING MASTER D-7

| SIZE |  |  |  | WEIGHT |  | AVERAGE STRENGTH |  | MINIMUM STRENGTH |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dia. Inch | Dia. mm | Circ. Inch | Circ. mm | Lbs per 100 Ft . | $\begin{aligned} & \mathrm{Kg} \text { per } \\ & 100 \mathrm{M} \end{aligned}$ | Lbs | Kg | Lbs | Kg |
| $1{ }^{\prime \prime}$ | 24 | $3^{\prime \prime}$ | 72 | 19.30 | 28.72 | 112,600 | 51,075 | 95,700 | 43,410 |
| $1-1 / 8^{\prime \prime}$ | 28 | 3-1/2" | 84 | 24.18 | 35.98 | 140,800 | 63,867 | 119,700 | 54,296 |
| $1-1 / 4^{\prime \prime}$ | 30 | 3-3/4" | 90 | 28.88 | 42.98 | 169,000 | 76,658 | 143,700 | 65,182 |
| 1-1/2" | 36 | 4-1/2" | 108 | 38.65 | 57.52 | 225,300 | 102,196 | 191,500 | 86,864 |
| 1-5/8" | 40 | $5{ }^{5}$ | 120 | 43.51 | 64.75 | 253,400 | 114,942 | 215,400 | 97,705 |
| 1-3/4" | 44 | 5-1/2" | 132 | 50.67 | 75.41 | 295,600 | 134,084 | 251,300 | 113,990 |
| 1-7/8" | 45 | 5-5/8" | 135 | 59.21 | 88.12 | 344,900 | 156,447 | 293,200 | 132,996 |
| $2{ }^{\text {" }}$ | 48 | $6^{\prime \prime}$ | 144 | 67.61 | 100.62 | 394,200 | 178,809 | 335,100 | 152,001 |
| 2-1/8" | 52 | 6-1/2 ${ }^{1}$ | 156 | 76.08 | 113.22 | 443,500 | 201,172 | 377,000 | 171,007 |
| 2-1/4" | 56 | 7" | 168 | 86.93 | 129.37 | 506,800 | 229,884 | 430,800 | 195,411 |
| 2-3/8" | 57 | 7-1/8" | 171 | 96.64 | 143.82 | 563,100 | 255,422 | 478,600 | 217,093 |
| 2-1/21 | 60 | 7-1/2' | 180 | 106.26 | 158.14 | 619,500 | 281,005 | 526,600 | 238,866 |
| 2-5/8" | 64 | $8^{\prime \prime}$ | 192 | 115.96 | 172.57 | 675,800 | 306,543 | 574,400 | 260,548 |
| 2-3/4" | 68 | 8-1/2" | 204 | 126.82 | 188.73 | 739,100 | 335,256 | 628,200 | 284,952 |
| 2-7/8" | 69 | 8-5/8" | 207 | 137.68 | 204.90 | 802,500 | 364,014 | 682,100 | 309,401 |
| 3" | 72 | 9" | 216 | 152.23 | 226.55 | 886,900 | 402,298 | 753,900 | 341,969 |

## MOORING MASTER"' P-7

Mooring Master™ P-7 construction is produced from high tenacity polyester fiber for the seven braided strength cores and braided chafe protection cover. It offers extremely high strength while allowing an excellent deep water mooring profile or higher shock mitigation than HMWPE fiber ropes. Based on its strength and built-in wear protection, P-7 enables smaller diameters to be used to replace standard polyester rope constructions thereby minimizing weight.

## MOORING MASTER P-7

| SIZE |  |  |  | WEIGHT |  | AVERAGE STRENGTH |  | MINIMUM STRENGTH |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dia. Inch | Dia. mm | Circ. Inch | Circ. mm | Lbs per 100 Ft . | Kg per 100 M | Lbs | Kg | Lbs | Kg |
| 1-1/2" | 36 | 4-1/2" | 108 | 54.82 | 81.58 | 100,580 | 45,623 | 85,493 | 38,780 |
| 1-5/8" | 40 | $5{ }^{5}$ | 120 | 63.91 | 95.11 | 117,340 | 53,225 | 99,739 | 45,242 |
| 1-3/4" | 44 | 5-1/2 ${ }^{1}$ | 132 | 74.46 | 110.81 | 136,900 | 62,098 | 116,365 | 52,783 |
| $1.7 / 8^{\prime \prime}$ | 45 | 5-5/8" | 135 | 85.09 | 126.63 | 156,460 | 70,970 | 132,991 | 60,325 |
| $2{ }^{\prime}$ | 48 | $6^{\prime \prime}$ | 144 | 91.25 | 135.80 | 167,630 | 76,037 | 142,486 | 64,631 |
| 2-1/8" | 52 | 6-1/2 ${ }^{\text {" }}$ | 156 | 109.42 | 162.84 | 201,160 | 91,246 | 170,986 | 77,559 |
| 2-1/4" | 56 | $7{ }^{\prime \prime}$ | 168 | 123.12 | 183.23 | 226,300 | 102,650 | 192,355 | 87,252 |
| 2-3/8" | 57 | 7-1/8 ${ }^{\text {" }}$ | 171 | 136.91 | 203.75 | 251,450 | 114,058 | 213,733 | 96,949 |
| 2-1/2" | 60 | 7-1/2" | 180 | 152.08 | 226.33 | 279,380 | 126,727 | 237,473 | 107,718 |
| 2-5/8" | 64 | 8" | 192 | 167.24 | 248.89 | 307,320 | 139,400 | 261,222 | 118,490 |
| 2-3/4" | 68 | 8-1/2" | 204 | 182.49 | 271.58 | 335,260 | 152,074 | 284,971 | 129,263 |
| 2-7/8" | 69 | $8.5 / 8^{\prime \prime}$ | 207 | 197.74 | 294.28 | 363,200 | 164,748 | 308,720 | 140,035 |
| $3^{\prime \prime}$ | 72 | $9{ }^{9}$ | 216 | 216.68 | 322.46 | 398,120 | 180,587 | 338,402 | 153,499 |



Kermantle Polyester Outside Nylon Inside

A firm body flexible kernmantle construction designed to meet the demands of rescue, rappelling, and specially rigging operations. It is a balanced non-rotational rope with a high tenacity solution dyed braided polyester cover over a heat stabilized nylon core. Static rope is designed to equal or exceed the 1983 NFPA standard for one and two-person rescue ropes.

CHARACTERISTICS

- Excellent wear resistance
- Good shock mitigation
- Maintains firm round shape when working
- High strength to weight ratio
APPLICATIONS
- Rescue Lines
- Rappelling Lines
- Specialty Rigging Lines

Fiber Content: Polyester and Nylon Fiber
Specific Gravity:
Water Absorption Fiber: ......... 3\% to 5\%

| Elastic Elongation at Percentage of Break Strength: |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Load | 3/8" | 7/16" | 1/2" | 5/8" |
| 200 lbs . | 1.7\% | 1.2\% | .8\% | 5\% |
| 450 lbs . | 3.5\% | 3.0\% | 2.2\% | 1.3\% |
| 900 lbs . | 5.9\% | 5.1\% | 4.1\% | 3.0\% |

## () $\int \square \sqrt{1} \sqrt[5]{5} \square^{\text {TM }}$ Product Code: 292

An extremely firm and stiff rope construction produced with high tenacity polyester fiber. Duravet ${ }^{\text {tw }}$ has a parallel core of filament polyester with a tightly braided polyester cover which makes it suitable for crimped sleeve connectors. This high strength and low stretch product is primarily used in
concrete soil erosion mats. The stated strengths are rope strengths and do not reflect termination efficiency. The wear resistance, firm construction, mechanical termination capability, light weight and non-corrosion make it an alternative to wire rope.


## CHARACTERISTICS

- High strength to weight ratio
- Diameter tolerance $\pm 2 \%$
- Low stretch


## DURAVET



- Non-corrosive


## APPLICATIONS

- Soil Erosion Mats
- Oil Boom Containment Rope
- Terrestrial Anchoring Lines
Fiber Content: ................ Polyester Fiber
Specific Gravity: ..................... 1.38
Water Absorption Fiber: ........ $3 \%$ to $5 \%$
Elastic Elongation
at Percentage of Break Strength:

| $10 \%$ | $20 \%$ | $30 \%$ |
| :--- | :---: | :---: |
| 0.6 | 1.4 | 2.2 |

## COMPARISON CHARTS

AVERAGE STRENGTHS IN POUNDS

## 12-STRAND ROPES

| Dia. | RP-12 <br> UltraBlue | $\begin{aligned} & \text { RP-12 } \\ & \text { SSR- } \\ & 1200 \\ & \hline \end{aligned}$ | RP-12 <br> Poly- <br> ester | $\text { RP- } 12$ <br> Nylon | AmSteel | AmSteelBlue | $2-\ln -1$ <br> Super <br> Strong | 2-In-1 <br> Stable <br> Braid | $\begin{gathered} \text { Spectron } \\ \text { II } \end{gathered}$ | Ultra-Tech |  | Dia. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7/64" | - | - | - | - | 1,200 | - | - | - | - | - | - | 7/64" |
| 1/8" | - | - | - | - | 1,800 | - | - | - | - | - | - | 1/8" |
| 3/16" | - | - | - | - | 3,800 | - | - | - | - | 2,300 | - | 3/16" |
| 1/4" | - | - | - | - | 6,600 | 9,200 | 2,300 | 2,800 | 4,500 | 4,800 | - | 1/4" |
| 5/16" | - | - | - | - | 9,800 | 13,700 | 3,400 | 4,200 | 7,500 | 7,800 | - | 5/16" |
| 3/8" | - | - | - | - | 14,100 | 20,445 | 4,900 | 5,600 | 9,800 | 10,500 | - | 3/8" |
| 7/16" | - | - | - | - | 16,500 | 23,925 | 6,600 | 7,700 | 11,700 | 14,800 | - | 7/16" |
| 1/2" | - | - | - | - | 25,000 | 36,250 | 8,500 | 10,400 | 15,500 | 22,00 | - | 1/2" |
| 9/16" | - | - | - | - | 30,800 | 44,660 | - | 13,300 | 22,000 | - |  | 9/16" |
| 5/8" | - | - | - | - | 40,700 | 59,015 | 15,200 | 16,300 | 27,000 | 42,000 | - | 5/8" |
| 3/4" | 13,500 | 16,000 | 17,400 | 18,400 | 48,000 | 69,600 | 19,100 | 20,400 | 35,000 | SPECIATY ROPES |  |  |
| 13/16" | - | - | - | - | 56,500 | 81,925 |  | - | 40,000 | Moorina Master |  |  |
| 7/8" | 20,000 | 24,000 | 26,200 | 27,600 | 67,800 | 98,310 | 28,300 | 29,900 | 50,000 | D-7 | P-7 | Dia. |
| $1 "$ | 25,000 | 28,000 | 30,500 | 32,200 | 80,000 | 116,000 | 33,600 | 39,200 | 57,000 | 112,600 | - | $1{ }^{1}$ |
| 1-1/16" | - | - | - | - | 90,000 | 131,300 |  |  | 59,300 |  |  | 1-1/16" |
| 1-1/8" | 27,000 | 36,000 | 39,200 | 41,400 | 102,000 | 147,900 | 45,000 | 48,200 | 72,900 | 140,800 | - | 1-1/8" |
| 1-1/4" | 38,000 | 42,000 | 45,800 | 48,300 | 114,000 | 165,300 | 52,000 | 57,300 | 81,000 | 169,000 |  | 1-1/4" |
| 1-5/16" | 43,000 | 48,000 | 52,300 | 55,200 | 127,000 | 184,150 | 59,000 | 64,700 | - |  |  | 1-5/16" |
| 1-1/2" | 47,000 | 60,000 | 65,400 | 69,000 | 157,000 | 227,650 | 74,000 | 75,100 | - | 225,300 | 100,580 | 1-1/2" |
| 1-5/8" | 61,000 | 72,000 | 78,500 | 82,800 | 186,000 | 283,185 | 91,000 | 87,200 | - | 253,400 | 117,340 | 1-5/8" |
| 1-3/4" | 73,000 | 84,000 | 91,600 | 96,600 | 220,000 | 334,950 |  |  |  | 295,600 | 136,900 | 1-3/4" |
| 1-7/8" | - | - | - | - | - | - | - | - | - | 344,900 | 156,460 | 1-7/8" |
| $2{ }^{\prime \prime}$ | 85,000 | 102,000 | 111,000 | 117,000 | 250,000 | 380,625 | 131,000 | 124,000 |  | 394,200 | 167,630 | 2" |
| 2-1/8" | 95,000 | 120,000 | 131,000 | 138,000 | 300,000 | 456,750 |  | - |  | 443,500 | 201,160 | 2-1/8" |
| 2-1/4" | 110,000 | 139,000 | 151,000 | 166,000 | 353,000 | 537,443 | 177,000 | 166,000 | - | 506,800 | 226,300 | 2-1/4" |
| 2-3/8" | - | - | - | - | - | - |  | - | - | 563,100 | 251,450 | 2-3/8" |
| 2-1/2" | 130,000 | 163,000 | 177,000 | 186,000 | 400,000 | 588,000 |  | - | - | 619,500 | 279,380 | 2-1/2" |
| 2-5/8" | 145,000 | 175,000 | 196,000 | 207,000 | 450,000 | 661,500 | 230,000 | 212,000 | - | 675,800 | 307,320 | 2-5/8" |
| 2-3/4" | 157,000 | 204,000 | 222,000 | 235,000 | 500,000 | 735,000 |  | - | - | 739,100 | 335,260 | 2-3/4" |
| 2-7/8" | - | - | - | - | - | - | - | - | - | 802,500 | 363,200 | 2-7/8" |
| 3" | 180,000 | 230,000 | 255,000 | 269,000 | 565,000 | 830,550 | 285,000 | 278,000 | - | 886,900 | 398,120 | 3" |
| 3-1/4" | 227,000 | 280,000 | 309,000 | 315,000 | 685,000 | 1,006,950 | 322,000 | 343,000 | - | - | - | 3-1/4" |
| 3-5/8" | 265,000 | 340,000 | 375,000 | 372,000 | 850,000 | - | 384,000 | 407,000 | - | - | - | 3-5/8" |
| $4 "$ | 315,000 | 410,000 | 450,000 | 449,000 | 1,000,000 | - | 451,000 | 470,000 | - | - | - | 4" |
| 4-1/4" | - | - | - | - | 1,150,000 | - | 523,000 | 533,000 | - | - | - | 4-1/4" |
| 4-5/8" | - | - | - | - | 1,300,000 | - | 599,000 | 616,000 | - | - | - | 4-5/8" |
| 5" | - | - | - | - |  | - | 680,000 | 698,000 |  | - | - | 5" |

12-STRAND ROPES

## SPECIATY ROPES

| Diameter | Quik-Splice Polytron | Dura-Plex | PTS-12 | Tenex | Tech 12 | Static Rope | Diameter |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3/16" | - | - | - | - | 5,600 | - | 3/16" |
| 1/4" | 1,600 | 1,940 | 1,750 | 3,240 | 8,150 | - | 1/4" |
| 5/16" | 2,500 | 2,600 | 3,000 | 4,720 | 13,000 | - | 5/16" |
| 3/8" | 3,600 | 3,880 | 4,500 | 6,170 | 18,000 | 5,700 | 3/8" |
| 7/16" | 4,600 | 5,200 | 5,900 | 9,000 | 28,000 | 7,800 | 7/16" |
| 1/2" | 6,650 | 6,700 | 8,750 | 11,800 | 33,000 | 10,000 | 1/2" |
| 9/16" | - | - | 11,250 | 15,000 | - | - | 9/16" |
| 5/8" | 10,900 | 11,600 | 14,000 | 17,100 | 50,000 | 13,500 | 5/8" |
| 3/4" | - | 14,500 | 16,000 | 22,400 | 65,000 | - | 3/4" |
| 13/16" | - | - | 21,000 | - | - | - | 13/16" |
| 7/8" | - | 21,200 | - | 32,600 | 84,000 | - | 7/8" |
| $1 "$ | - | 25,000 | - | 42,700 | 102,000 | - | $1 "$ |

## NEW ROPE TENSILE STRENGTHS

New rope tensile strengths are based on tests of new and unused rope of standard construction in accordance with manufacturer's Standard Test Methods. It can be expected that strengths will decrease as soon as a rope is put into use. Because of the wide range of rope use, changes in rope conditions, exposure to the many factors affecting rope behavior, and the possibility of risk to life and property, it is impossible to cover all aspects of rope applications or to make blanket recommendations as to working loads.

## WORKING LOADS

Working loads are for rope in good condition with appropriate splices, in noncritical applications and under normal service conditions. Working loads are based on a percentage of the approximate breaking strength of new and unused rope of current manufacture. Normal working loads do not cover dynamic conditions such as shock loads or sustained loads, nor do they cover where life, limb or valuable property are involved. In these cases a lower working load must be used.
A higher working load may be selected only with expert knowledge of conditions and professional estimates of risk, if the rope has been inspected and found to be in good condition, and if the rope has not been subject to dynamic loading (such as sudden drops, snubs or pick-ups), excessive use, elevated temperatures, or extended periods under load.

## NORMAL WORKING LOADS

Normal working loads are not applicable when rope has been subject to dynamic loading. Whenever a load is picked up, stopped, moved or swung there is an increased force due to dynamic loading. The more rapidly or suddenly such actions occur, the greater the increase will be. In extreme cases, the force put on the rope may be two, three, or even more times the normal load involved.
Examples could be ropes used as a tow line, picking up a load on a slack line, or using rope to stop a falling object. Dynamic effects are greater on a low elongation rope such as polyester than on a high elongation rope such as nylon, and greater on a short rope than on a long one. Therefore, in all such applications normal working loads as given do not apply.

## DYNAMIC LOADING

For dynamic loading applications involving severe exposure conditions, or for recommendations on special applications, consult the manufacturer.

## DANGER TO PERSONNEL

Persons should be warned against the serious danger of standing in line with a rope under tension. Should the rope part, it may recoil with considerable force. In all cases where any such risks are present, or if there is any question about the loads involved or the condition of use, the working load should be substantially reduced and the rope properly inspected before every use.

## WINCHING LINES

Braided rope can develop a twist when constantly used on a winch. This makes handling more difficult and the rope should be relaxed and rotated in the opposite direction to remove a twist. To avoid this condition the direction of turns over the winch should be alternated regularly.

## SPLICING AND KNOTS

Splices should be used instead of knots whenever possible because knots can decrease rope strength up to $50 \%$. When splices are used, always use the manufacturer's recommended splicing procedures. When knots are used, be sure to take into consideration the knot's corresponding reduction to the rope strength and adjust your working load accordingly. For more
information please see the Knots section on page 37.

## ROPE INSPECTION:

Avoid using rope that shows signs of aging and wear. If in doubt, destroy the used rope.
No type of visual inspection can be guaranteed to accurately and precisely determine the actual residual strength. When the fibers show wear in any given area, the rope should be re-spliced, downgraded, or replaced. Check the line regularly for frayed strands and broken yarns. Pulled strands should be re-threaded into the rope if possible. A pulled strand can snag on a foreign object during rope operation.
Both outer and inner rope fibers contribute to the strength of the rope. When either is worn, the rope is naturally weakened. Open the strands of the rope and look for powdered fiber, which is one sign of internal wear.

A heavily used rope will often become compacted or hard which indicates reduced strength. The rope should be discarded if this condition exists.

## AVOID ALL ABRASIVE CONDITIONS

All rope will be severely damaged if subjected to rough surfaces or sharp edges. Chocks, bitts, winches, drums and other surfaces must be kept in good condition and free of burrs and rust. Pulleys must be free to rotate and should be of proper size to avoid excessive wear.

## AVOID CHEMICAL EXPOSURE

Rope is subject to damage by chemicals. Consult the manufacturer for specific chemical exposure, such as solvents, acids, and alkalies. Consult the manufacturer for recommendations when a rope will be used where chemical exposure (either fumes or actual contact) can occur.

## AVOID OVERHEATING

Heat can seriously affect the strength of synthetic ropes. The temperatures at which $50 \%$ strength loss can occur are: Polypropylene $250^{\circ} \mathrm{F}$, Nylon $350^{\circ} \mathrm{F}$, Polyester $350^{\circ} \mathrm{F}$. When using rope where the temperature exceeds these levels (or if it is too hot to hold), consult the manufacturer for recommendations as to the size and type of rope for the proposed continuous heat exposure conditions. When using ropes on a capstan or winch, care should be exercised to avoid surging while the capstan or winch head is rotating. The friction from this slippage causes localized overheating which can melt or fuse synthetic fibers, resulting in severe loss of tensile strength.

## STORAGE

All rope should be stored clean, dry, out of direct sunlight, and away from extreme heat. It should be kept off the floor on racks to provide ventilation underneath. Never store on a concrete or dirt floor, and under no circumstances should cordage and acid or alkalies be kept in the same vicinity. Some synthetic rope (in particular polypropylene or polyethylene) may be severely weakened by prolonged exposure to ultraviolet (UV) rays unless specifically stabilized and/or pigmented to increase UV resistance. UV degradation is indicated by discoloration and the presence of splinters and slivers on the surface of the rope.

ROPE ILSEPECTLON \& RETLREREENU

The use of rope for any purpose subjects it to friction, bending and tension. All rope hardware, sheaves, rollers, capstans, cleats, as well as knots are, in varying degrees, damaging to the rope. It is important to understand that rope is a moving, working, strength member and even under the most ideal conditions will lose strength during use in any application. Maximizing the safety of rope performance is directly related to how strength loss is managed and making sure ropes are retired from service before they can create a dangerous situation. Ropes are serious working tools and used properly will give consistent and reliable service. The cost of replacing a rope is extremely small when compared to the physical damage or personnel injury a worn out rope can cause.

## ROPE LIFE FACTORS:

There are basically three steps to consider in providing the longest possible service life, the safest conditions and long range economy for ropes: Selection, Usage, and Retirement.

## 1. SELECTION

Select the right rope for the job in the first place.

Selecting a rope involves evaluating a combination of factors. Some of these factors are straight forward like comparing rope specifications. Others are less qualitative like a preference for a specific color or how a rope feels in your hand. Cutting corners, reducing application factors, sizes or strengths on an initial purchase creates unnecessary replacements, potentially dangerous conditions and increases long term costs. Fiber and construction being equal, a larger rope will out-last a smaller rope because of the greater surface wear distribution. By the same token, a stronger rope will out-last a weaker one because it will be used at a lower percentage of its break strength with less chance of over stressing.
STRENGTH: When given a choice between ropes, select the strongest of any given size. A load of 200 pounds represents $2 \%$ of the strength of a rope with a breaking strength of 10,000 pounds. The same load represents $4 \%$ of the strength of a rope that has a breaking strength of 5,000 pounds. The weaker rope is having to work harder and as a result will have to be retired sooner.

ELONGATION: It is well accepted that ropes with lower elongation under load will give you better load control, a big help at complicated job sites. However, a rope with lower elongation that is shock loaded can fail without warning even though it appears to be in good shape. Low elongating ropes should be selected with the highest possible strength. Twisted rope has lower strength and more stretch. Braided rope has higher strength and lower stretch.
FIRMNESS: Select ropes that are firm and round and hold their shape during use. Soft or mushy ropes will snag easily and abrade quickly causing accelerated strength loss. A loose or mushy rope will almost always have higher break strengths than a similar rope that is firm and holds its shape because the fibers are in a straighter line which improves strength but compromises durability.
REPUTATION: Consider the opinion of industry associates who may have more experience as to how well a rope performs. Consider also the reputation of the rope manufacturer. Are they involved with and supportive of the industries where their products are used? Do they stand behind their products with consistent quality and reliable service? Buying unproven ropes because they are a little less expensive is false economy and can lead to disaster.

## 2. USAGE:

Use rope properly; do not abuse or shock load it, observe recommended usage factors for bending and work loads. Keep ropes clean and eliminate abrasion whenever possible.

WORKING LOADS: Working loads are the loads that a rope is subjected to in everyday activity. They are normally expressed as a percentage of new rope strength and should not exceed 20\%. A point to remember is that a rope may be severely overloaded or shock loaded in use without breaking. However, damage and strength loss may have occurred without any visible indication. The next time the rope is used under normal working loads the acquired weakness can cause it to break. Do not blame the rope, it was simply overloaded and failed from what is known as fatigue.

## RECOMMENDED WORK LOAD LIMIT:

| CATALOGED ROPES |  |
| :--- | :---: |
| Construction | Working Load |
| Type | \% Average Break Strength |
| 3-Strand | $20 \%$ |
| 8-Strand Plait | $20 \%$ |
| 12-Strand Braid | $20 \%$ |
| Double Braid | $20 \%$ |

BENDING: Any sharp bend in a rope under load decreases its strength substantially and may cause premature damage and failure. Sheave diameters on rotating sheave blocks should be 10 times the rope diameter for twisted ropes and 8 times the rope diameter for braided ropes. The diameter on fixed pin terminations should be at least 3 times the rope diameter (i.e., the bending radius for $1 / 2^{\prime \prime}$ ropes should be $1-1 / 2$ ").
KNOTS: While it is true that a knot reduces rope strength, it is also true that a knot is a convenient way to accomplish rope attachment. The strength loss is a result of the tight bends that occur in the knot. With some knots, ropes can lose up to $50 \%$ of their strength. It is vital that the reduction in strength by the use of knots be taken into account when determining size and strength of a rope to be used in an application. To avoid knot strength reduction, it is recommended that a rope be spliced according to manufacturers instructions. Splice terminations are used in all our ropes to determine new and unused tensile strengths. Therefore, whenever possible, spliced terminations should be used to maximize the rope strength for new and used ropes.
ROPE STORAGE: Keep your ropes as clean and dry as possible and store them in a coil away from heat sources.
SHOCK LOADS: Shock loads are simply a sudden change in tension from a state of relaxation or low load to one of high load. Any sudden load that exceeds the work load by more than $10 \%$ is considered a shock load. The further an object falls, the greater the impact. Synthetic fibers have a memory and retain the effects of being overloaded or shock loaded and can fail at a later time even though loaded within the work load range.

# ROPE LIUSPECHION \& RETLRENENU 

## 3. RETIREMENT:

Retire rope from use when it has reached its discard point.

One of the most frequently asked questions is "When should I retire my rope?" The most obvious answer is before it breaks. But, without a thorough understanding of how to inspect it and knowing the load history, you are left making an educated guess. Unfortunately, there are no definitive rules nor industry guidelines to establish when a rope should be retired because there are so many variables that affect rope strength. Factors like load history, bending radius, abrasion, chemical exposure or some combination of those factors, make retirement decisions difficult. Inspecting your rope should be a continuous process of observation before, during and after each use. In synthetic fiber ropes the amount of strength loss due to abrasion and/or flexing is directly related to the amount of broken fiber in the rope's cross section. After each use,look and feel along every inch of the rope length inspecting for damage as listed below.
ABRASION: When the rope is first put into service the outer filaments of the rope will quickly fuzz up. This is the result of these filaments breaking and this roughened surface actually forms a protective cushion and shield for the fibers underneath. This condition should stabilize, not progress. If the surface roughness increases, excessive abrasion is taking place and strength is being lost. As a general rule for braided ropes, when there is $25 \%$ or more wear from abrasion the rope should be retired from service. In other words, if $25 \%$ or more of the fiber is broken or worn away the rope should be removed from service. With three-strand ropes, $10 \%$ or more wear is accepted as the retirement point.

Look closely at both the inner and outer fibers. When either is worn the rope is obviously weakened. Open the strands and look for powdered fiber which is one sign of internal wear. Estimate the internal wear to estimate total fiber abrasion. If total fiber loss is $20 \%$, then it is safe to assume that the rope has lost $20 \%$ of its strength as a result of abrasion.
GLOSSY OR GLAZED AREAS: Glossy or glazed areas are signs of heat damage with more strength loss than the amount of melted fiber indicates. Fibers adjacent to the melted areas are probably damaged from excessive heat even though they appear normal. It is reasonable to assume that the melted fiber has damaged an equal amount of adjacent unmelted fiber.
INCONSISTENT DIAMETER: Inspect for flat areas, bumps or lumps. This can indicate core or internal damage from overloading or shock loads and is usually sufficient reason to replace the rope.
DISCOLORATION: With use, all ropes get dirty. Be on the lookout for areas of discoloration which could be caused by chemical contamination. Determine the cause of the discoloration and replace the rope if it is brittle or stiff.

## INCONSISTENCY IN <br> TEXTURE AND STIFFNESS:

Can indicate excessive dirt or grit embedded in the rope or shock load damage and is usually reason to replace the rope.
TEMPERATURE: When using rope, friction can be your best friend or worst enemy if it is not managed properly. By definition, friction creates heat, the greater the friction, the greater the heat buildup. Heat is an enemy to synthetic fiber and elevated temperatures can drastically reduce the strength and/or cause rope melt-through.

The critical and melting temperatures for synthetic fibers are listed below:

| TEMPERATURES | Critical | Melfing |
| :---: | :---: | :---: |
| Polypropylene | $150^{\circ} \mathrm{F}$ | $330^{\circ} \mathrm{F}$ |
| HMWPE | $150^{\circ} \mathrm{F}$ | $297{ }^{\circ} \mathrm{F}$ |
| Technora | $450{ }^{\circ} \mathrm{F}$ | $900^{\circ}{ }^{*}$ |
| Kevlar | $400^{\circ} \mathrm{F}$ | $800^{\circ}{ }^{*}$ |
| Nylon | $350^{\circ} \mathrm{F}$ | $460^{\circ} \mathrm{F}$ |
| Polyeaster | $350^{\circ} \mathrm{F}$ | $480^{\circ} \mathrm{F}$ |
| Manila | $180^{\circ} \mathrm{F}$ | $350^{\circ} \mathbf{F}^{*}$ |
| *Charring point |  |  |

High temperatures can be acheived when surging rope on a capstan, checking ropes on a cable, running over stuck or non-rolling sheaves or rollers. Each rope's construction and fiber type will yield a different coefficient of friction (reluctance to slip) in a new and used state. It is important to understand the operational demands and insure the size, rope construction and fiber type be taken into account to minimize heat buildup.
Never let ropes under tension scrub together or move relative to one another. Enough heat to melt the fibers can buildup and cause the rope to fail as quickly as if it had been cut with a knife.
Always be aware of areas of heat buildup and take steps to minimize it; under no circumstances let any rope come in contact with an exhaust muffler or any other hot object.
The strength of a used rope can be determined by testing but the rope is destroyed in the process so the ability to determine the retirement point before it fails in service is essential. That ability is based on a combination of education in rope use and construction along with good judgment and experience. Remember, you almost always get what you pay for in the form of performance and reliability.

## ROPE INSPECTION CHECK LIST

| Condition Discard Point | Condition | Discard Point |
| :---: | :---: | :---: |
| 1. Original rope bulk reduced by abrasion: | 3. Diameter inconsistency: |  |
| - Double braid* cover by 50\% .................................. $V$ | - Localized diameter reduction | $\checkmark$ |
| -Twelve-strand braid by 25\% ................................... | - Flat areas | $\checkmark$ |
| - Eight-strand plait by $25 \%$...................................... $V$ | - Lumps and bumps in rope |  |
| - Three-strand by 10\% ........................................... $V$ | 4. Glossy or glazed fiber: |  |
| 2. Fiber strands cut: | - Localized or extended areas | $\checkmark$ |
| - Double braid* by three or more adjacent strands cut ..... $V$ | 5. Inconsistency of texture: |  |
| - Twelve-strand braid by two or more adjacent strands cut $V$ | - Localized or extended areas of stiffness | $\checkmark$ |
| - Eight-strand plait by by one or more adjacent strands cut $\downarrow$ <br> - Three-strand by one or more adjacent strands cut ......... | 6. Discoloration: |  |
| Refers to double braids that have both core and cover strength members. | - caused by chemical contamination | ..... $V$ |

In order to establish definitions involving stretch in ropes, it is necessary to
review the terms utilized to define the basic components of stretch:

| Non-Recoverable <br> Extension | Extension Recoverable <br> Over A Period Of Time | Immediately Recoverable <br> Extension |
| :---: | :---: | :---: |
| P.E. After Relaxed | Hysteresis <br> (Recoverable Over Time) | E.E. While Working |

## ELASTIC ELONGATION (E.E)

Refers to the portion of stretch or extension of a rope that is immediately recoverable after the load on the rope is released. This recoverable tendency is a primary result of the fiber (or fibers) used as opposed to the rope construction. Each type of synthetic fiber inherently displays a unique degree of elasticity. Relatively, HMWPE fiber has an extremely low elasticity compared to nylon fiber.

## HYSTERESIS

Refers to a recoverable portion of stretch or extension over a period of time after a load is released. In measuring elastic recovery it is the recovery that occurs immediately when a load is removed. But thereafter, a remaining small percentage of elastic recovery will occur slowly and gradually over a period of hours or days. This retardation in recovery is
measured on a length/time scale and is known as hysteresis or recovery over time.

## PERMANENT EXTENSION (P.E.)

## AFTER RELAXED

Refers to that portion of extension which, due to construction deformation (compacting of braid and helical changes) and some plastic deformation of the yarn fibers, prevents the rope returning to the original length.

## PERMANENT EXTENSION (P.E.) WHILE WORKING

Is the amount of extension which exists when stress is removed but no time is give for hysteresis recovery. It includes the nonrecoverable and hysteresis extension as one value and represents any increase in the length of a rope in a constant working situation such as during repeated surges in towing or other similar cyclical operations.

The percentage of P.E. over the working load range is generally in order of four or six percent for braided ropes and two to three times as much for plaited. However, it will vary slightly with different fibers and rope constructions. In some applications, such as subsurface mooring or devices that demand precise depth location and measurement, allowances must be made for this factor.
CREEP (COLD FLOW) refers to fiber deformation (elongation) due to molecular slippage under a constant static loading situation. Fibers that have this inherent characteristic will display extremely lower or negligible creep if minor fluctuations occur in the rate and/or frequency of load levels. In rope form, this would apply to polypropylene, polyethylene and HMPWE fibers.

The first layer (wrap) around the winch drum should be put on closely and tightly. Intial winding tension (load) should be approximately fifty pounds. This will prevent subsequent wraps from slipping down between turns when tension is applied. The American Group Winch Lines tend to self level.


NOTE: A minimum of four wraps of rope should always be kept on the drum and never worked below the four wraps. An important exception is applied to Amstee ${ }^{\circledR}$ and Amstee ${ }^{\oplus}$ Blue where a minimum of eight wraps should always be kept on the drum.

## DETERMINING LENGTH OF ROPE THAT CAN BE PUT ON A WINCH

The formula for rope capacity on a winch drum is:

$$
\begin{aligned}
& \text { Length to be } \\
& \text { stored (feet) }
\end{aligned}=\frac{A\left(B^{2}-C^{2}\right)}{15.3(\text { rope dia. })^{2}}
$$

$A, B, C$ and rope diameter are expressed in inches; length (L) is expressed in feet.


## SHEAVE DIAMETERS \& SIZES

Sheave diameters should be:
■ Twisted/Plaited = 10 times rope diameter

- Braided = 8 times rope diameter Exception Kelar Braids = 20-24 times rope diamter


To assure maximum efficiency and safety, sheaves for braided ropes should be no less than eight times the rope diameter. The sheave groove diameter should be no less than ten percent greater than the rope diameter. The sheave groove should be round in shape. Sheaves with "V" shaped grooves should be avoided, as they tend to pinch and damage the rope through excessive friction and crushing of the rope fibers. Sheave surfaces should be kept smooth and free of burrs and gouges. Bearings should be maintained to ensure smooth rotation of sheaves.

## BENDING RADIUS

## Any sharp bend in a rope under load decreases its strength substantially and may cause premature damage or failure. <br> In sizing the radius of bitts, fairleads and chocks for best performance the following guidelines are offered:

- Where a rope bends more than ten degrees around bitts or chocks or, for that matter, is bending across any surface, the diameter of that surface should not be less than three times the diameter of the rope. Stated another way, the diameter of the surface should be at least three times the rope diameter. A four-to-one ratio (or larger) would be better yet because the durability of the rope increases substantially as the
 diameter of the surface over which it is worked increases.


Diameter (radius) $=1 / 2$ rope cir.

- Many tugboats using eight and nine-inch circumference headlines in ship-handling work have fair size bitts (eighteen-inch diameter, etc.) which is an adequate bending radius. However, ironically, many of these bow and shoulder bitts are equipped with "horns" of a relatively small diameter (five or six-inches) and it is these horns under or over which the lines pass and bend first in many cases. This results in shortened rope life and excessive rope replacement costs.


BOLLARD with undersized "horns"


- The ratio of the length of an eye splice to the diameter of the object over which the eye is to be placed (bollard, bitt, cleat, etc.) should be a minimum three-to-one relationship and preferably five-to-one. In other words, if you have a bollard two feet in diameter the eye splice should be six or ten feet in length. By using this ratio the angle of the two legs of the eye splice at its throat will not be so severe as to cause a parting or tearing action at this point (thimbles are normally designed with a three-to- one ratio).


## REMOVING ROPE FROM REEL OR COIL:

Synthetic fiber ropes are normally shipped on reels for maximum protection while in transit. The rope should be removed from the reel by pulling it off the top while the reel is free to rotate. This can be accomplished by passing a pipe through the center of the reel and jacking it up until the reel is free from the deck. Rope should never be taken from a reel lying on its side. If the rope is supplied on a coil, it should always be uncoiled from the inside so that the first turn comes off the bottom in a counter-clockwise direction.


## AVOID KINKING AND HOCKLING:

The continuous use of a line on one side of a winch or windlass is a common abuse which can render a line useless in a comparatively short time. Repeated hauling of a line over a winch in a counterclockwise direction will extend the lay of the rope and simultaneously shorten the twist of each strand. As this action continues, kinks (or hockles) will develop. Once these hockles appear, they cannot be removed and the rope is permanently damaged at the point of hockling.


If, on the other hand, the line is continuously hauled over a winch in a clockwise direction, the rope lay is shortened and the rope becomes stiff and will kink readily.

To avoid detrimental conditions, the direction of turns over the winch should be alternated regularly. Clockwise turns are recommended for the initial use of a new line. If this practice is observed, the original rope balance will be maintained and the lines will have a much longer useful life.
This condition also arises in the deep-sea mooring of free-rotating buoys where a three-strand rope will rotate until it spins and twists itself into hockles and eventually destroys itself. The use of swivels with three-strand ocean-towing hawsers, or transmission stringing lines, may also cause damaging hockles. The sudden release of a heavy strain may also cause hockles or hard kinks.
Excessive turns can cause kinking in any rope but hockles can occur only in the basic "twisted" ropes (three-strand, four-strand and cable-laid).
Braided and plaited ropes cannot be hockled; their inter-locking strand construction prevents the unlaying. Strands run in both directions creating a torquefree balance thus eliminating any inherent tendency toward twist or rotation. Swivels can be used safely but are seldom necessary. One word of caution here: when marrying a braided line to a twisted line (and also to wire rope) the twisted line can impart its twist to the braided line if the ropes are married without a swivel in between.
A braided or plaited rope, being torquefree, can have twist induced by constant working on winches and capstans. If a twist develops, it can easily be removed by "counter-rotating" when the rope is relaxed.

## COILING AND FAKING:

Three-strand ropes should be coiled in a clockwise direction (or in the direction of the lay of the rope) and uncoiled in a counterclockwise direction to avoid kinks. An alternate and perhaps better method is to fake out the line figure-eight fashion. This avoids putting twist in the line in either direction and lessens the risk of kinking.

## FIGURE " 8 "

Great care must be taken in the stowage and proper coiling of three-strand ropes to prevent the natural built-in twist of the line from developing kinks and damaging hockle:


Braided ropes on the other hand have no built-in twist and are far more resistant to kinking. Even if kinks do develop they cannot develop further into hockles.
The best method for making up braided rope for deck stowage is in figure-eight fashion either faked flat on the deck or figure-eight vertically around bulkhead cleats. It should not be hand coiled in either direction as this merely puts turn into the line which may develop into kinks when paying-out. Remember that there is no turn or twist in the line to begin with so do not produce it by coiling.


Three-Strand rope faked down on deck


Rigging is complicated and demands experience as well as an understanding of the effects on the rope of the various knots used. It is widely known that knots can significantly reduce rope strength with a corresponding reduction in the work load limit recommended by a manufacturer.


## BOWLINE

The bowline will not slip or jam and is easily untied. The bowline creates about $40 \%$ rope strength reduction.


## CLOVE HITCH <br> WITH HALF HITCH

The clove hitch is easy to tie and untie. The clove hitch creates approximately $40 \%$ rope strength reduction.

## COW HITCH

The Cow Hitch provides a suitable method of joining two ropes of similar diameter without the use of thimbles or other hardware. The Cow Hitch yields approximately $85 \%$ efficiency.

## SHEET BEND

The sheet bend is used instead of a square knot to tie two lines of different diameter together. Be sure to slide the smaller line down onto the loop. The sheet bend creates approximately $50 \%$ rope strength reduction.

## NYLITE SPOOL, SHIELD AND SHACKLE

Unlike conventional thimbles the Nylite ${ }^{\text {tw }}$ Connector Assembly is easily installed into or removed from a pre-made soft eye. Only one-seventh the weight of metal thimbles, Nylite ${ }^{\text {tw }}$ connectors will not deform or rupture from repeated loadings. The Nylite" ${ }^{\text {te }}$ Shackle was designed to take full advantage of the high strength of the Nylite ${ }^{\text {tw }}$ connector and synthetic rope.

Working Load in tons (2,000 lbs.)

* Working loads, as given, are based on pin/bore relationship provided by use of Nylite ${ }^{\text {mim }}$ Shackle. When using a nonstandard pin, the Working Load as given DOES NOT APPLY.
* When using with Spectron IITM up-size one size
* When using with Amsteel ${ }^{\text {® }}$ up-size two sizes

| SIZE | COLOR OF SHIELD | WORKING LOAD* | MINIMUM EYE SIZE |
| :---: | :---: | :---: | :---: |
| 1 | Blue | 1-1/8 Tons | 2-3/16" |
| 2 | Red | 1-5/8 Tons | 2-3/4" |
| 3 | Green | 2-1/2 Tons | 3-3/4" |
| 4 | Orange | 4-1/2 Tons | 4-7/8" |
| 5 | Black | 7-1/2 Tons | 6-1/8" |
| 6 | Yellow | 12-1/2 Tons | 7-5/8" |
| 7 | Black | 20 Tons | 9-3/4" |
| 8 | Black | 25 Tons | 11-1/4" |
| 9 | Black | 35 Tons | $14^{\prime \prime}$ |



## NYLITE SPOOL, SHIELD, \& SHACKLE

| Measurements listed in inches. |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SIZE | ROPE SIZE RANGE |  | SPOOL/SLEEVE |  | PIN* DIA. | A | B | C | D | E | F | G |
|  | DIA. | CIRC. | I.D. | O.D. |  |  |  |  |  |  |  |  |
| 1 | 3/8-1/2 | 1-1/8-1-1/2 | . 46 | NA | . 44 | . 88 | 1.08 | 1.11 | 2.41 | . 38 | 1.99 | 2.34 |
| 2 | 9/16-5/8 | 1-3/4-2 | . 58 | NA | . 56 | 1.13 | 1.21 | 1.38 | 3.11 | . 50 | 2.38 | 2.88 |
| 3 | 3/4-13/16 | $2-1 / 4-2-1 / 2$ | . 64 | NA | . 63 | 1.38 | 1.61 | 1.77 | 3.54 | . 56 | 3.02 | 3.70 |
| 4 | 7/8-1-1/16 | 2-3/4-3-1/4 | . 89 | NA | . 88 | 1.75 | 1.9 | 2.29 | 4.70 | . 75 | 3.79 | 4.71 |
| 5 | 1-1/8-1-5/16 | 3-1/2-4 | 1.02 | NA | 1.00 | 2.13 | 2.15 | 2.85 | 5.55 | . 88 | 4.85 | 5.95 |
| 6 | 1-1/2-1-3/4 | $4-1 / 2-5-1 / 2$ | 1.54 | NA | 1.50 | 2.63 | 3.14 | 3.8 | 8.25 | 1.37 | 6.30 | 7.85 |
| 7 | 2-2-1/4 | 6-7 | 1.75 | 3.00 | 1.38 | 3.25 | 3.75 | 4.80 | 8.90 | 1.50 | 7.93 | 9.89 |
| 8 | 2-1/2-2-5/8 | 7-1/2-8 | 2.00 | 3.25 | 1.50 | 3.75 | 4.13 | 5.61 | 10.00 | 1.75 | 9.24 | 11.47 |
| 9 | 2-3/4-3-1/4 | 8-1/2-10 | 2.25 | 3.50 | 1.75 | 4.63 | 5.06 | 6.95 | 12.15 | 2.00 | 11.45 | 14.28 |

* Sizes 1 through 5 are supplied with jam nuts and cotter pins. Larger sizes have cotter pins and standard nuts.



## SNATCH BLOCK

The Nylite ${ }^{\text {tw }}$ Snatch Block maximizes a two part liffing system without over stressing synthetic rope. Exclusive high strength sheave reduces weight while providing the proper radius and groove shape to eliminate rope wear. Swivel plate with locking bolt makes change over easy and fast. Hook swivels under no or low load conditions.

Part. No. $\qquad$ 915-321
Rope Size (Dia.) ......... 7/8" - 1-1/8"
Working Load $\qquad$ . 8 -Tons
Block Weight $\qquad$
$\qquad$ 33 lbs.
$\qquad$

Hook Opening (B) w/latch .......... 1.5"

##  GLID LESEELBLLX

## ALUMINUM TUBULAR FIDS

Requirements for cut lengths, splicing and fabrication can best be met by contacting authorized American Group Distributors. Requirements for design, engineering and production of large and/or complex rope systems should be directed to:
Specialty Products Manager,
THE AMERICAN GROUP
2090 Thornton Street
Ferndale, WA 98248


## ALUMINUM TUBULAR FIDS

A different sized Splicing Fid is required for each size of rope. When ordering be sure to specify the proper sized fid (See chart)

| ALUMNUM TUBULAR FIDS |  |  |  |
| :---: | :---: | :---: | :---: |
| PRODUCT CODE | FID SIZE = ROPE DIA. | TOTAL FID IENGTH | SHORT FID SECTION |
| 901 | 1/4" | 5-1/2" | 2-1/16" |
| 901 | 5/16" | 6-3/4" | 2-1/2" |
| 901 | 3/8" | 7-3/4" | 2-7/8" |
| 901 | 7/16" | 9-1/2" | 3-9/16" |
| 901 | 1/2" | 11" | 4-1/8" |
| 901 | 9/16" | 12-1/4" | 3-5/8" |
| 901 | 5/8" | 14" | 4-1/8" |
| 901 | 3/4" | 16" | 4-3/4" |
| 901 | 7/8" | 19" | 4-3/4" |
| 901 | $1 "$ | 211 | 5-1/4" |

## PUSHER

| PRODUCT | ROPE |  |
| :---: | :---: | :---: |
| CODE | SIZE | DIA. |
| 913 | Small | $1 / 4^{\prime \prime}-1 / 2^{\prime \prime}$ |
| 914 | Large | $9 / 16^{\prime \prime}-1^{\prime \prime}$ |

SAMSON SPLICE TRAINING KIT \& RED BOOK SPLICING MANUAL


Contains 2 Double Braided Ropes, 1 Fid, 1 Pusher, and Splicing Manual

For use with Samson 2-in-1 Double Braided Ropes and 12-Strand Braided Ropes. Eye - Back Splices


## WIRE FIDS

For Rope 1-1/16" Diameter to 7" Diameter - Use Wire Fid

| For Rope 1-1/16" Diameter to 7" Diameter - Use Wire Fid |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ROPE DIA. | ROPE CIRC. | WIRE DIA. T | TOTAL WIDTH W | $\begin{gathered} \text { FID } \\ \text { LENGTH } \\ \text { L } \\ \hline \end{gathered}$ | $\begin{gathered} \hline \text { SHORT } \\ \text { SECTION } \\ \text { C } \end{gathered}$ | $\begin{aligned} & \text { FID } \\ & \text { SCALE } \end{aligned}$ |
| $1 "$ | 3' | 3/16" | 3/4" | 10-1/2" | 2-5/8" | 1/2 |
| 1-1/8" | 3-1/2" | 3/16" | 3/4" | 12-1/4" | 3" | 1/2 |
| 1-1/4" | 3-3/4" | 3/16" | 3/4" | 13-1/4" | 3-1/4" | 1/2 |
| 1-5/16" | $4{ }^{\prime \prime}$ | 3/16" | 3/4" | $14{ }^{\prime \prime}$ | 3-1/2" | 1/2 |
| 1-1/2" | 4-1/2" | 3/16" | 3/4" | 16" | $4{ }^{\prime \prime}$ | 1/2 |
| 1-5/8" | 5" | 3/16" | 3/4" | 17-12" | 4-1/2" | 1/2 |
| 1-3/4" | 5-1/2" | 1/4" | 1-1/" | 19" | 4-3/4" | 1/2 |
| 2" | $6 "$ | 1/4" | 1-1/" | 21 " | 5-1/4" | 1/2 |
| 2-1/8" | 6-1/2" | 1/4" | 1-1/4" | 23" | 5-3/4" | 1/2 |
| 2-1/4" | $7{ }^{\prime \prime}$ | 1/2" | 1-1/4" | 25 " | $6{ }^{\prime \prime}$ | 1/2 |
| 2-1/2" | 7-1/2" | 1/4" | 1-1/4" | $26 "$ | 6-1/2" | 1/2 |
| 2-5/8" | 8" | 1/2" | 1-1/4" | 28 " | $7{ }^{\prime \prime}$ | 1/2 |
| 2-7/8" | 8-1/2" | 1/4" | 1-1/4" | 30" | 7-1/2" | 1/2 |
| 3" | $9{ }^{\prime \prime}$ | 5/16" | 1-7/8" | 32" | 8" | 1/2 |
| 3-1/4" | 10" | 5/16" | 1-7/8" | 35" | 8-3/4" | 1/2 |
| 3-1/2" | 11" | 5/16" | 1-7/8" | 39" | 9-1/2" | 1/2 |
| $4 "$ | 12" | 5/16" | 1-7/8" | 42" | 10-1//2" | 1/2 |
| 4-1/4" | 13 " | 5/16" | 1-7/8" | $46 "$ | 11-1/2" | 1/2 |
| 4-5/8" | 14" | 3/8" | 4-1/2" | 33" | 8-1/4" | 1/3 |
| 5" | 15" | 3/8" | 4-1/2" | 35" | 8-3/4" | 1/3 |
| 5-1/4" | 16" | 3/8" | 4-1/2" | 37" | 9-1/2" | 1/3 |
| 5-1/2" | 17" | 3/8" | 4-1/2" | 40 | 10" | 1/3 |
| 6" | 18" | 3/8" | 4-1/2" | 42" | 10-1/2" | 1/3 |
| 6-1/4" | 19" | 3/8" | 4-1/2" | $44{ }^{\prime \prime}$ | 111 | 1/3 |
| 6-1/2" | 20" | 3/8" | 4-1/2" | 47" | 11-1/2" | 1/3 |
| $7{ }^{\prime \prime}$ | 21" | 3/8" | 4-1/2" | 49" | 12-1/4" | 1/3 |

[^0] This is necessary in order to keep wire fids to a practical length.



[^0]:    Note: Wire fid sizes $3^{\prime \prime}$ circ. to $13^{\prime \prime}$ circ. are $1 / 2$ scale; fids over $13^{\prime \prime}$ circ. are $1 / 3$ scale.

